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ABSTRACT

While time difference of arrival (TDOA) information is sufficient to passively

solve for the location of a radio frequency transmitter, frequency difference of arrival

(FDOA) information may be added to the TDOA information to solve for both the

position and velocity of the transmitter.  This analysis implements a stochastic discrete

event simulation, written in Java, to compare and stochastically describe, under a variety

of conditions, the differences between a mixed TDOA/FDOA Multi-platform Global

Positioning System (GPS) Assisted Geo-location System and that of the same system

which uses TDOA information only.  The presented analysis compares both solution

types for two- and three-dimensional fixes across:  various measurement error

distributions and correlation values, sensor network geometry, and sensor platform

selection.  The simulation results show first order stochastic dominance in the accuracy

of the TDOA/FDOA solution in the two-dimensional scenarios.  In the three-

dimensional scenarios, sensor network to target geometry dominates both solutions’

accuracy.  While solution accuracy is used as the primary method of effectiveness, the

distribution of each solution’s uncertainty is also compared.  Finally, the simulation itself

remains a useful tool for further system design experimentation, performance indication,

and as a means to describe system capabilities to the war fighter.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest.  While every effort has been made,

within the time available, to ensure that the programs are free of computational and logic

errors, they cannot be considered validated.  Any application of these programs without

additional verification is at the risk of the user.
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EXECUTIVE SUMMARY

The passive location of both hostile and friendly electromagnetic emitters has been

an important capability for the war-fighter, for law enforcement, and in search and rescue

operations.  The characteristics of an emitted signal once received by several sensors in an

operating environment can be exploited to passively locate an emitter.  Two of the

characteristics that can be measured by separate receivers of such a signal are: (1) the

differences in Doppler shifts (if any) in the signal’s frequency and (2) the difference in the

time that the signal arrived at the sensors.  These measurements are known as Frequency

Difference of Arrival (FDOA) and Time Difference of Arrival (TDOA).  In the presence of

moving sensors, the sensors’ receivers measure the frequency of arrival (FOA) of the

signal.  The difference of two FOA’s provides an FDOA which yields a surface called an

isodop, in this case meaning equally differenced Doppler data, which contains the locus of

all points on which the emitter could lie given the Doppler information.  Similarly, the

difference of a single receiver’s time of arrival (TOA) with another TOA yields a TDOA

which describes a surface known as an isochron, in this case meaning equally differenced

time, which contains the locus of all points on which the emitter could lie given the TDOA

information.

In the past, the measurement of such quantities in the tactical environment has

been difficult due to their sensitivities to timing errors between any two sensors.  Further,

when trying to use these measurements for the geolocation of an emitter, errors in the

sensor’s own location and velocity measurements compound with the signal processing

errors to provide unreliable emitter fixes.  Historically, the Navy has relied upon long

range, shore-based High Frequency Direction Finding (HFDF) networks.  These networks

use large antennas to measure the angle of arrival of a signal and cross these bearings over

long distances to triangularize the emitter’s location.  Given the recent losses of Navy

overseas assets and that more and more emitters in the tactical environment operate in the

Very High Frequency (VHF) and Ultra High Frequency (UHF) range, the ability to

perform emitter geolocation is diminishing.  As a result, the Naval Security Group Support

Activity (NSGSA) contracted with the Applied Research Lab at the University of Texas at

Austin (ARL:UT) to develop  an affordable, low-risk TDOA geolocation system using

commercial off the shelf (COTS) and government off the shelf (GOTS) technologies.
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ARL:UT responded by the development of the Carry-On Multi-Platform Global

Positioning System Assisted TDOA System.

When using TDOA techniques, errors in the emitter geolocation problem is

essentially related to three components:  the location of the observer relative to the emitter

(the “geometry”), signal timing, and observer position measurement. The emergence of

Global Positioning System (GPS) technology offers capabilities which can greatly enhance

TDOA applications by reducing measurement error components.  Specifically, GPS allows

for dramatic reductions in the observer position error and sample timing between

observers.  In addition, the advantages of using such commercially available and

government "off-the-shelf" technology allows the system to be placed on a variety of

platforms and, thus, could make the GPS-Assisted TDOA Geolocation System a highly

desirable Multi-Platform tool in the "Joint Warfare" environment.

The measurement of the FDOA is done simultaneously when measuring the TDOA

in the formulation used by the ARL:UT Test System.  While the initial test and

development of the ARL:UT system focused on the use of only TDOA measurements for

geolocation, the combined use of TDOA and FDOA measurements for geolocation has

become possible due to the GPS technology in the ARL:UT system.  By providing more

information to the geolocation solution, combined TDOA and FDOA measurements can

expand the size of the state of the observer—providing velocity information as well as the

emitter’s location.  In addition to providing velocity information, it has been postulated

that when poor geometry exists between observers, FDOA can more tightly resolve the

solution of the geolocation fix than TDOA alone.  Further, when the emitter is believed to

have zero velocity, FDOA can provide the emitter’s three dimensional location using only

three observers instead of four by fixing the solution’s velocity state to zero.

Regardless of which method or algorithm is used, the measurement of the TDOA

and the FDOA is a statistical process, built upon standard estimation assumptions.  As

such, any measurement of either component can be viewed as a random variable related to

the signal, the environment, and the accuracy and precision of the whole system that

performs the measurement.  Through the use of a Java-based, Stochastic TDOA and

FDOA Simulation (JBSTAFSim), this thesis explores the impact on the geolocation of an

emitter in the presence of such measurement errors.  Given an estimate of the distribution

of these measurement errors, JBSTAFSim can simulate the impact on a TDOA or mixed

TDOA/FDOA geolocation solution within a given “Joint Warfare” scenario of observers.

In particular, JBSTAFSim allows the user to:  adjust the magnitude and correlation of
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measurement error variance; adjust the believed measurement error variance used by the

geolocator; dictate the network geometry and types of observers; and elect to choose a

batch processed geolocator which incorporates previous geolocation information into the

current solution to solve for the emitter’s state.

Through simulation, this thesis shows that the mixed T/FDOA solution

stochastically dominates the TDOA solution in two-dimensional fix scenarios.  While no

stochastic dominance of either solution is shown in the three-dimensional fix case, the

author shows that the accuracy of the three-dimensional problem is related to the sensor

network geometry.  Further, if a three-dimensional fix is required, it is shown that robust

sensors like satellites should be used to improve the sensor network to target geometry.

Finally, since the location of the target relative to the sensors is generally not known, the

author demonstrates the need to define a method to rate the sensor network geometry

given possible target locations.

These results can be viewed from three perspectives.  The first view is from the

perspective of the designer of the system who wishes to understand the sensitivities of

measurement errors and wishes to improve upon these measurements by the system or

take them into account in the geolocation process.   The next view is from the warrior, or

user of the system, who would be employing this system to localize a hostile or friendly

emitter.  The warrior is concerned with the quality of the information provided by the

system.  As such, the warrior needs to know how well the system can perform and what

he or she can do with respect to the sensor network to improve the fix of the target.

Finally, the last perspective is from that of the activities which fund the designer to create

such systems for the warrior.  This activity is concerned with system performance for the

amount invested.  Given several functional areas that system designers could pursue to

develop or improve, the simulation can rate the impact of this additional or improved

information on the system’s performance and describe how this impacts the warfare

commander’s utility for such information.
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I. INTRODUCTION

A.  BACKGROUND

The passive location of both hostile and friendly electromagnetic emitters has been

an important capability for the war-fighter, for law enforcement, and in search and rescue

operations.  The characteristics of an emitted signal once received by several sensors in an

operating environment can be exploited to passively locate an emitter.  Two of the

characteristics that can be measured by separate receivers of such a signal are: (1) the

differences in Doppler shifts (if any) in the signal’s frequency and (2) the difference in the

time that the signal arrived at the sensors.  These measurements are known as Frequency

Difference of Arrival (FDOA) and Time Difference of Arrival (TDOA).  In the presence of

moving sensors, the sensors’ receivers measure the frequency of arrival (FOA) of the

signal.  The difference of two FOA’s provides an FDOA which yields a surface called an

isodop, in this case meaning equally differenced Doppler data, which contains the locus of

all points on which the emitter could lie given the Doppler information (see Figure 1-1).

Similarly, the difference of a single receiver’s time of arrival (TOA) with another TOA

yields a TDOA which describes a surface known as an isochron, in this case meaning

equally differenced time, which contains the locus of all points on which the emitter could

lie given the TDOA information (see Figure 1-2).

Figure 1-1 FDOA Isodops (From Ref. 1)
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Figure 1-2 TDOA’s of Three Observers (From Ref. 3)

In the past, the measurement of such quantities in the tactical environment has

been difficult due to their sensitivities to timing errors between any two sensors.  Further,

when trying to use these measurements for the geolocation of an emitter, errors in the

sensor’s own location and velocity measurements compound with the signal processing

errors to provide unreliable emitter fixes.  Historically, the Navy has relied upon long

range, shore-based High Frequency Direction Finding (HFDF) networks.  These networks

use large antennas to measure the angle of arrival of a signal and cross these bearings over

long distances to triangularize the emitter’s location.  Given the recent losses of Navy

overseas assets and that more and more emitters in the tactical environment operate in the

Very High Frequency (VHF) and Ultra High Frequency (UHF) range, the ability to

perform emitter geolocation is diminishing.  As a result, “the Naval Security Group

Support Activity (NSGSA) contracted with the Applied Research Lab at the University of

Texas at Austin (ARL:UT) to develop  an affordable, low-risk TDOA geolocation system

using commercial off the shelf (COTS) and government off the shelf (GOTS)

technologies”[Ref. 1].  ARL:UT responded by the development of the Carry-On Multi-

Platform Global Positioning System Assisted TDOA System.

When using TDOA techniques, errors in the emitter geolocation problem is

essentially related to three components:  the location of the observer relative to the emitter

(the “geometry”), signal timing, and observer position measurement. The emergence of

Global Positioning System (GPS) technology offers capabilities which can greatly enhance

TDOA applications by reducing measurement error components.  Specifically, GPS allows

for dramatic reductions in the observer position error and sample timing between
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observers.  In addition, the advantages of using such commercially available and

government "off-the-shelf" technology allows the system to be placed on a variety of

platforms and, thus, could make the GPS-Assisted TDOA Geolocation System a highly

desirable Multi-Platform tool in the "Joint Warfare" environment as illustrated in Figure

1-3.

 
Figure 1-3 GPS Assisted Geolocation System in Joint Warfare (From Ref. 2)

Through the use of GPS technology and differential techniques combined with Rubidium

standard oscillators, the total theoretical signal timing error is approximately 25 nano-

seconds which, when multiplied by the speed of light, converts to 7.5 meters in

distance.[Ref. 1]

The measurement of the FDOA is done simultaneously when measuring the TDOA

in the formulation used by the ARL:UT Test System.  While the initial test and

development of the ARL:UT system focused on the use of only TDOA measurements for

geolocation, the combined use of TDOA and FDOA measurements for geolocation has

become possible due to the GPS technology in the ARL:UT system.  By providing more

information to the geolocation solution, combined TDOA and FDOA measurements can

expand the size of the state of the observer—providing velocity information as well as the

emitter’s location.  In addition to providing velocity information, it has been postulated

that when poor geometry exists between observers, FDOA can more tightly resolve the

solution of the geolocation fix than TDOA alone.  Further, when the emitter is believed to

have zero velocity, FDOA can provide the emitter’s three dimensional location using only

three observers instead of four by fixing the solution’s velocity state to zero.
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B.  PURPOSE

Regardless what method or algorithm used, the measurement of the TDOA and the

FDOA is a statistical process, built upon standard estimation assumptions.  As such, any

measurement of either component can be viewed as a random variable related to the

signal, the signal’s environment, and the accuracy and precision of the whole system that

performs the measurement.  Through the use of a Java-based, Stochastic TDOA and

FDOA Simulation (JBSTAFSim), the author explores the impact on the geolocation of an

emitter in the presence of such measurement noise.  Given an estimate of the variance of

these measurement errors, JBSTAFSim can simulate the impact on a TDOA or mixed

TDOA/FDOA geolocation solution within a given “Joint Warfare” scenario of observers.

In particular, JBSTAFSim allows the user to:  adjust the magnitude and correlation of

measurement error variance; adjust the believed measurement error variance used by the

geolocator; dictate the network geometry and types of observers; and elect to choose a

batch processed geolocator which incorporates previous geolocation information into the

current solution to solve for the emitter’s state.

These results can be viewed from three perspectives.  The first view is from the

perspective of the designer of the system and wishes to understand the sensitivities of

measurement errors and wishes to improve upon these measurements by the system or

take them into account in the geolocation process.   The next view is from the warrior, or

user of the system, who would be employing this system to localize a hostile or friendly

emitter.  The warrior is concerned with the quality of the information provided by the

system.  As such, the warrior needs to know how well the system can perform and what

he or she can do with respect to the sensor network to improve the fix of the target.

Finally, the last perspective is from that of the activities which fund the designer to create

such systems for the warrior.  This activity is concerned with system performance for the

amount invested.  Given several functional areas that system designers could pursue to

develop or improve, the simulation can rate the impact of this additional or improved

information on the system’s performance and describe how this impacts the warfare

commander’s utility for such information.

C.  ORGANIZATION

The next chapters discuss briefly:  the configuration of the ARL:UT test system,

how the TDOA and FDOA measurements are made, and how these measurements enter
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into the geolocation process.  Some of the detailed theory and methods that JBSTAFSim

uses can be found in Appendixes A-C.  Chapters V and VI provide an overview of

JBSTAFSim and a description of the simulated environment.  Chapter VII presents the

results of the simulation of TDOA and mixed TDOA/FDOA geolocation methods.

Chapter VIII offers recommendations based on the results presented in the previous

chapter.
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II.  ARL:UT SYSTEM OVERVIEW

The ARL:UT system is capable of receiving a frequency in the HF, VHF, or UHF

frequency bands.  Only one voice grade channel compatible with existing Navy hardware

for communication between sensors is required.  Further, the system is designed to be

compatible with the Unified Build (UB) environment and interface with and display its

results graphically on the Joint Maritime Command and Information System (JMCIS).

Each observer updates its location with a GPS receiver.  The receivers have a one pulse-

per-second (pps) output which is used to trigger sampling of the incoming signal of

interest.  The accuracy of the GPS clocks drives each receivers’ output of the one pps

pulse to be within 20 nano seconds of each other.  The sampler at each observer, then, is

phase-locked to the one pps pulse to within five nano seconds making the samples

between observers to be within 25 nano seconds [Ref. 20].  As depicted in Figure 2-1, the

system network consists of one master sensor and a few slave sensors.  In the evenly

 

Send Signal from Master
Acquire Signal
Compute FFT

Acquire Signal
Compute FFT

Correlate Signals
Compute TDOA

Send TDOA and
GPS PVT to Master

TDOA

Target

Remote 2

Remote 3

Signal Acquisition
Intercept Frequency

GPS PVT
Collect TDOA's

Compute Geolocation

Figure 2-1 System Overview (From Ref. 20)

determined case, three sensors are required for a two-dimensional geolocation and four for

a three-dimensional fix.  Once given the frequency of interest from traditional detection

means, the master tunes its receiver to that frequency and orders the slaves to tune to the

same frequency. Each observer stores the incoming signal as buffered data.  Since only

one communications channel is required to be available, the ARL:UT system uses a

distributed processing system to make the most efficient use of the single communications

link. The master determines a 400 milli second portion that contains the most energy and

computes the Fast Fourier Transform (FFT) of this sample.  This FFT is then sent to the
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slaves with a GPS time stamp.  The slaves search their buffers for the 400 milli second

sample that corresponds to the master’s time stamped FFT.  The slaves then FFT their

own data and correlate these samples using a Complex Ambiguity Function (CAF) to

determine the TDOA.  The TDOA, FDOA, GPS position of the observer, velocity of the

observer, and timestamp are returned to the master.  The master collects the information

and sends the package to a standard Navy TAC3/4 workstation which calculates the

geolocation.  A detailed reference of the preliminary hardware configuration and

specifications of the ARL:UT system can be found in Reference 20.

Like any system that depends on the Global Positioning System, this system is very

vulnerable if GPS were lost or significantly degraded. While relatively reliable sensor

information such as position and velocity might be available from inertial systems on the

sensor’s platform, the need for a reliable, common time standard between sensors so that

data can be buffered and retrieved at common times would still be required. While the

vulnerabilities of GPS is an issue well beyond the scope of this discussion, it must be

considered when weighing the value, limitations, and capabilities of such a system.
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III. TDOA AND FDOA MEASUREMENTS

A.  BACKGROUND AND PURPOSE

The main purpose of this chapter is to describe how the TDOA and FDOA

measurements are made and the assumptions behind those measurements.  Much of the

next section is a basic summary of several signal processing theories and methods.  If the

reader is not interested in these details, the first three sections of this chapter may be

omitted with the following in mind.  The main importance of this chapter is to present the

measurement of TDOA’s and FDOA’s from a stochastic RF reception as a statistical

process and to get an understanding of the assumptions required to formulate these

processes.  The measurement errors in any TDOA or FDOA are multivariate functions of

many parameters—many of which are random variables themselves.  Measurements are

further confounded by the sensitivity and accuracy of the method employed to determine

the TDOA or FDOA measurement.

JBSTAFSim does not assume any one particular method to measure the TDOA or

FDOA; nor does JBSTAFSim assume any properties with respect to the signal, the noise

in the signal, or the noise in the environment—the random variables which have been

shown in the works listed below to function as parameters which describe the

measurement error estimate.  Rather, JBSTAFSim allows the user to set the measurement

error variance estimate and correlation of the measurements.  Since these measurements

are modeled statistically, it is reasonable to assume that regardless of the method used to

obtain them or the many parameters which might describe them, the error in their

measurement can also be described statistically.  By doing this, JBSTAFSim can simulate

these measurements and indicate their effect on the geolocation process with minimal

information provided with respect to:  the system performing the measurements, the signal

of interest, and the many random variables describing the received signal and its

environment.  Viewed this way, the model maintains integrity while also allowing it to

serve in the most general sense.

The following discussion is based on Reference 1, an NPS thesis by LT David A.

Streight who applies Cyclostationary techniques to measure the TDOA of an emitter.  In

describing the advantages of this particular method LT Streight provides an excellent

overview of the basic statistical properties and assumptions of the signal involved in
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determining the TDOA and FDOA measurement using traditional methods.  More

information about these process can be found in detail in References 4, 5, and 6.

B.  BASIC MODEL AND THE GENERALIZED CROSS CORRELATION

Most TDOA models assume a stationary signal which is received by two sensors in

the presence of white Gaussian noise.  These signals have been mathematically modeled as

a function in the time domain:

( ) ( ) ( )x t s t n t= + 1

( ) ( ) ( )y t A s t D n t= ⋅ − + 2

where ( )s t  is assumed to be statistically independent and uncorrelated with independent

noises ( )n t1  and ( )n t2 .  A  is the complex valued relative magnitude and phase mismatch

between the receivers; D  represents the TDOA between the signals.[Ref. 1]  The

autocorrelation and cross-correlation functions are given by:

( ) ( ) ( )R R Rx s nτ τ τ= +
1

( ) ( ) ( )R A R Ry s nτ τ τ= +2

2

( ) ( ) ( )R A R D Ryx s n nτ τ τ= ⋅ − +
1 2

and the spectral density functions are:

( ) ( ) ( )S f S f S fx s n= +
1

( ) ( ) ( )S f A S f S fy s n= +2

2

( ) ( ) ( )S f A S f e S fyx s
j fD

n n= ⋅ ⋅ +− 2

1 2

π

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8
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Using these relationships and assumptions, the parameter D , the TDOA, can be

obtained by using correlation techniques.  The most basic technique is the Generalized
Cross Correlation method.  First, note that (by 2-5) ( )Ryx τ  peaks when τ = D .  Next

assuming that f  of the received signal is within a finite Bandwidth B  around the carrier

frequency f0 , the ratio of ( )S fyx  to ( )S fx  is:

( )
( )

S f

S f

A eyx

x

j fD

=
⋅




− 2

0

π

    f
B

f f
B

otherwise
0 02 2

− ≤ ≤ +

The inverse Fourier transform of this ratio is equal to:

( ) ( )
( )h

S f

S f
e dfyx

xf B

f B

j ft
0

2

2

2

0

0

τ π=
−

+
+∫

which peaks at τ = D  and provides the TDOA measurement.[Ref. 1]

C.  COMPLEX AMBIGUITY FUNCTION

The Generalized Cross Correlation method as described above works well in the

case of static transmitters and receivers.  However, as shown in Reference 5, in order to

determine the TDOA when there exists a Doppler shift, the spectrum of one of the signals

must be translated in frequency equal to the FDOA measured between the observers.  This

can be shown by rewriting the generalized model above so that:

( ) ( ) ( )x t s t n t= + 1

( ) ( ) ( )y t A s t D e n tj f td= ⋅ − +− 2
2

π

where fd  is the Doppler difference measured between the two observers.  This requires

the maximization over the two parameters D  and fd  which leads to:

2-9

2-10

2-11

2-12
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( ) ( ) ( )A D f x t y t D e dtd
j f t

T

d, *= − −∫ 2

0

π

Notice that at fd = 0 , the CAF reduces to the Generalized Cross Correlation method.  In

Reference 5, Stein shows, given these assumptions, the variance of the estimates for the

TDOA and FDOA can be related to the signal integration time, the signal bandwidth, and

the noise bandwidth:

σ
β γTDOA BT

=
1 1

σ
γFDOA

eT BT
=

1 1

where:

 B = the noise bandwidth at the input of both receivers,

( )

( )
β π=





















−∞

+∞

∫

∫

∆
2

2

1
2

f W f df

W f df

s

s

with ( )W fs = the spectral density of the signal as shaped by the receiver,

Te =rms. integration time and,

1 1

2

1 1 1

1 2 1 2γ γ γ γ γ
= + +











with 
1

γ i

= the signal to noise ratio (SNR) for each receiver.[Ref. 1]

2-13

2-14

2-15

2-16

2-17
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With a little sensitivity analysis of the above equations, it can be seen that the driving

component in the standard deviation of the TDOA measurement is SNR.  In an idealized

case, below 10dB SNR and with a 400 ms integration time of the ARL:UT system, the

standard deviation of a single TDOA measurement exceeds 100 meters.  “With three

measurements to  provide a fix, all within this idealized case, the geolocation would have a

standard deviation of 173 meters” [Ref. 1], a large best-case error.

D.  CYCLOSTATIONARY DETERMINATION

LT Streight’s thesis applies Cyclostationary techniques to measure the TDOA.

This is a robust approach which is able to perform well despite both low SNR and the

presence signals which may or may not intentionally seek to jam the observers’ receivers.

By taking advantage of the cyclic—time periodic—nature of most signals, a three

dimensional correlation in the frequency and cyclic frequency domains can be performed.

Thus, where the signal of interest and noise may have appeared overlapping in the

traditional models, they can still be separated by a cyclic autocorrelation function which

can be thought of as a special autocorrelation function which produces spectral lines at

frequencies indicative of the signal’s periodic nature.  In the frequency domain, the cyclic

autocorrelation function is replaced by the spectral correlation function.  The Spectral

Correlation Function (SCF) is a correlation in the frequency domain which peaks at the

nominal spectral frequency and cyclic frequency in what is called a bi-frequency plane.

See Figure 2-1.
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Figure 3-1 Signals plotted in the Bi-frequency Plane (From Ref. 1)

This method allows for dramatically better results in the presence of greater

interference and, as seen above, can provide a classification of the modulation type.  The

model of the signal at any pair of receivers remains as in 2-1 and 2-2,

( ) ( ) ( )x t s t n t= + 1

( ) ( ) ( )y t A s t D n t= ⋅ − + 2 ,

and assumes the same statistical assumptions with respect to the properties of the signal

and noise except that now the noise may now contain co-channel interference which could

spectrally mask the signal.  As before, auto and cross-correlation functions are used in

conjunction with the spectral density functions to measure the TDOA; however, now

these correlated values are aligned by the cyclic frequency characteristic of the desired

signal.  While highly accurate in the presence of interference, this method is

computationally expensive.  LT Streight employs a computationally efficient

cyclostaionary TDOA algorithm, SPECCOA, “which may not be as be as accurate as

others but is the best choice for the efficiency required in a tactical system.”[Ref. 1]  While

not implemented by the ARL:UT test system, this method could be implemented as the
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algorithm of choice in the next system or in future systems.  It is presented here in detail,

along with the GCC and CAF, to point out the multitude of processes, parameters, and

assumptions required to estimate the TDOA or FDOA measurement error variance.

Regardless of the method used to obtain them, the TDOA and FDOA measurement errors

can be represented as a stochastic process.

E.  IMPLICATIONS OF SIGNAL PROCESSING TO GEOLOCATION

Throughout this chapter, discussion has focused on the signal models and their

assumptions.  As noted previously Stein, in Reference 5, gives the TDOA and FDOA

estimate measurement errors based on a few parameters and several assumed conditions.

Dr. Petre Rusu and Dr. Lisa Giulianelli of ARL:UT, in References 7 and 8, follow the

work of Azaria and Hertz, in Reference 4, to find the solution for the correlation between

TDOA measurements as a function of SNR, observation interval length, and noise and

signal bandwidths.  Unfortunately, many of these parameters that go into these

formulations are in fact stochastic themselves.  Further, in Reference 7, the enabling

assumptions with regard to the estimation of the measurement error correlation begin with

those of equations 2-1 and 2-2, namely, that the signal received at any observer can be

described as the summation of two parts—a deterministic signal plus Gaussian noise.  The

noises are considered “uncorrelated with the signal and with each other across

observers”[Ref. 7].  While these assumptions like these are critical for the necessary

mathematical formulations like those in sections B through D above and in works such as

Reference 7, in an operating environment, these models will fail to represent the one

stochastic, and most important, variable present at the observers’ receivers—the actual,

“real world” signal itself.  Viewing each signal received at each of the observers as a

stochastic process, the TDOA and FDOA measurement process should not be thought of

as that which can parameterize the measurement errors; rather, it is the randomness

nascent in each observer’s received signal that introduces the measurement errors.

Since quantifying the impacts of the estimate covariance and correlation of TDOA

and FDOA measurement errors on the geolocation process is the goal of these analyses,

this discussion might seem to be disputing a fine point.  However, it demonstrates the

evaluative value of JBSTAFSim as a tool for assessing the impact of any assumption or

model of the TDOA and FDOA measurement errors on the geolocation process.
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JBSTAFSim, then, functions as an “If—Then” tool.  The “If—Then” portion of the

simulation is remarkably simple:  given a network and allocation of observers, if

measurement errors are introduced with a given probabilistic description; then, the

expected Geolocation results are as follows. JBSTAFSim, then, exploits one of the

greatest advantages of simulation; rather than redefine our mathematical models or

simulate only the equations of our models, let us instead violate our own assumptions,

stochastically, and examine the results within an empirical simulation space.  The results of

such an investigation are useful for anyone who:  is designing a system such as this and

wishes to evaluate or improve its effectiveness; using a system such as this for tactical

decisions and wishes to know its capabilities and limitations; and for anyone sponsoring

the development of such a system and wishes to know how added capabilities or

improvements might improve the warrior’s use of such a system.
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IV. EMITTER GEOLOCATION

A.  BACKGROUND

The TDOA and FDOA measurements computed by the signal processing methods

described in the previous chapter form the basis for the measurement data required to

solve for the emitter’s location.  These quantities measured in seconds and in Hertz can be

represented formally in terms of length (meters) and velocity (meters/second) by the

following algebraic equations:

( ) ( ) ( ) ( )
FDOA f

v v

c

r r

r r

v v

c

r r

r r
ij s

i s i s

i s

j s j s

j s

= −
−

⋅
−

−









 −

−
⋅

−

−





























r r r r

r r

r r r r

r r

Where the subscripts i and j represent the observer pair forming the differences and s

denotes the signal’s source.  An observer’s three dimensional location in space is defined

by (x,y,z), and r  and ν  represent the radial and velocity vectors of the target or

observers.  Therefore, the TDOA and FDOA can be thought of as spatial differences and

relative velocity differences, rather than in time and frequency units.

Much has been written and theorized about the best way to solve for the state of

an emitter given TDOA information.  While the TDOA measurement is non-linear in the

emitter’s state, solutions can be formulated to directly solve for the location of the target

as linear models which satisfy non-linear constraints.  These solutions usually involve

squaring the TOA equation which results in two locations which satisfy the TDOA data.

References 9, 10, and 12 all show different, but mathematically equivalent algebraic

methods to directly solve for the state of an emitter.  In particular, in Reference 10, Dr.

Petre Rusu, of ARL:UT, goes through great work to linearly propagate the estimate

errors through his solution to provide an uncertainty estimate for his solution to the

emitter’s state.  In Reference 11, Dr. Rusu further proves, given consistent weighting

matrices, the theoretical equivalence of the TOA direct solution and least squares

( )
( ) ( ) ( ) ( ) ( ) ( )

TDOA c t t

TDOA x x y y z z x x y y z z

ij i j

ij i s i s i s j s j s j s

= −

= − + − + − − − + − + −
2 2 2 2 2 2

  4-1

4-2
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formulation.  References 9 and 13 are specifically geared to the algebraic solution of GPS

equations; however, their techniques can be applied to any TDOA geolocation problem.

In JBSTAFSim, the method of Reference 13, by Chaffee and Abel, is used to

provide an initial starting position for the linearized least squares approach.  This method

is very elegant and numerically robust.  Further, it provides a useful understanding of the

solution ambiguity by not immediately squaring the TOA equation.  Thus, this method was

chosen for its numerical superiority and for its elegant resolution of the ambiguity of

emitter location.  The linearized least squares solution uses this direct solution as its

starting point from which it seeks a solution to minimize the sum of squared errors.  After

a fix is computed, the solver then uses the previous solution as the starting position for the

subsequent solutions until a request is made for another direct solution to update the

current solution.  The periodicity of these updates may be set by the user.  In an actual

geo-location system, direct solution updates might be requested as a function of many

complex variables and parameters, for instance:  quality of the previous fix, the

dimensionless shock, time since the last fix, by request of the system user, or quality of the

received signal.  JBSTAFSim seeks to minimize the sum of squared errors by

implementing a Square Root Information Filter (SRIF).  The SRIF was chosen for its

numerical superiority and its ability easily include a priori statistics and function as a

numerically stable extended Kalman filter.  The SRIF in JBSTAFSim can perform either as

a single epoch state solver or as an extended Kalman Filter, “batch”, processor.

JBSTAFSim’s SRIF does not, however, incorporate a movement model that considers a

target which moves with time.  While a movement model would no doubt provide the

most robust approach, given limited communications between observers, the complexity

of such a model, the non-linearity of the measurements, and the purpose of the system to

act as a locator and not as a fire control system, the batch process mode without a

movement model should be considered adequate for those targets with zero, or near zero,

velocities.  The development of movement models for particular classes of targets would

be a large undertaking; however, their design could be facilitated through empirical

simulation by extending the JBSTAFSim solver.

Finally, and as will be discussed in the next chapter, JBSTAFSim’s simulation

results should not be viewed as a measure of the ARL:UT system.  In particular,

ARL:UT’s system is currently in the test and development phase in which its Engineers

and Scientists are considering a multitude of design issues like the ones presented in this

thesis.  Therefore, JBSTAFSim’s results are not necessarily identical with that of the
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ARL:UT system, but should be viewed as representative of that of a generic, though

robust, multi-platform, GPS assisted TDOA/FDOA system.

B.  DIRECT GEOLOCATION SOLUTION

This method was introduced in Reference 13 in order to provide a description of

the exact solution for the GPS pseudorange equations.  This method provides a greater

understanding of the geometry involved in the TDOA equations and can be applied in a

numerically stable fashion.  Dr. Tolman of ARL:UT provides a simple explanation of

Chaffee and Abel’s formulation in Reference 14.  This section provides a quick summary

of this direct solution method based on both of these references.

Following the notation and example of Dr. Tolman’s notes in Reference 14, let the
emitter be located at position 

r
r  and define an observer to be located at position 

r
ri .  The

range between one observer and the emitter is defined by:

R r ri i= −
r r

The TOA equation is defined as:

TOA ct r r ct R cti i i i= = − + = +
r r

0 0

where t0  is the unknown time of transmission of the signal.  This equation holds for any

change in the origin of time.  The TDOA is simply the difference of two TOA’s:

( )TDOA
c

R Rij i j= −
1

Algorithms in References 9 and 10 begin by squaring the TOA equation above.  Chaffee

and Abel do not.  Instead, label one receiver I, the master.  Let all other receivers be

denoted with i M∈ −1 1,... .

( ) ( )ct ct ct ct r r r ri I I i I I− − − = − − −0

r r r r

4-3

4-4

4-5

4-6
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Further, define:

∆ i i Ict ct= −

r r r
r r ri i I' = −

r r r
r r rI' = −

This makes the TOA equation:

∆ i ir r r+ = −r r r
' ' '

Square this equation and note 
r
r '

2
 cancels:

r r r r
r r r ri i i i' ' ' '

2 22 2+ • = +∆ ∆

Stack this equation for M-1 differences yields:

r

M M

r

r

r r

M

r r

r
r ri i i i i' '

'

' '∆ ∆
















 =

• −









1

2

2

For continuity, Chaffee and Abel describe this set of equations as:

S
Z

u

u

S Si

i

i

i

i

i∆ ∆ ∆


















 =



















, ,

1

2

Where v w,  represents the Lorentz inner product on ℜ4  defined as:  if ( )v x at= ,  and

( )w y ct= ,  are vectors, then v w x y act, = − .  In addition, also note Z
u

b

u

b








 =

−








  ,

S ri i≡
r

' , and u r≡
r
' .[Ref. 13]

Note that these two equations, 4-9 and 4-10, are both of the form AX B= .  Thus,

this appears to be a linear problem in X , but the emitter location solved by TDOA

techniques is not linear.  In this case, the fourth component of X  is non-linear; this non-

4-7

4-8

4-9

4-10
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linearity will act as a separate constraint on the solution of the linear problem.  In the

overdetermined case when there are four equations (M=5 observers), the non-linear

constraint is automatically satisfied; however, we rarely expect to be in an overdetermined

case.  Therefore, the matrix A  is singular, but still can be inverted as a generalized

inverse:  ( )A A AAg T T− −
=

1
.  The best way to obtain A g− , however, is by the singular

value decomposition (SVD) algorithm. More compelling, the SVD algorithm directly

provides the null space, a ⊥ , required to satisfy the non-linear constraint.  Since A  is 3x4,

and we assume rank 3, then the null space of A  is one dimensional and the complete

solution for X  is:

X A B ag= +− ⊥λ

Where a ⊥  is a unit vector spanning the null space of A  and λ  is a real variable.  To

prove this is the solution to AX B= , multiply both sides of the solution by A  and recall

Aa ⊥ = 0 ,

( )AX AA AA B Aa AX BT T= + = =
− ⊥1

λ

Given the above equation, it is evident that the constant λ  is arbitrary with respect

to the linear equation; however, from equation 4-9, the non-linear constraint requires the

fourth component of X  be equal to the magnitude of the vector of its first three

components:  ( )r
r X'

2
4

2
0− = .

Now, consider the first three dimensions or components of the solution for X —

Chaffee and Abel call this vector: ( )u A AA u A BA
t t g= =

− −1
.  The solution to the linear

equation has given us this vector which describes the emitter’s location uniquely in a

three-dimensional subspace orthogonal to  a ⊥ , but cannot provide any information to the

ambiguous component normal to this subspace, i.e. along a ⊥ .  The non-linear constraint

must be used to determine this component defined by λ .  Substituting the four
dimensional solution to the linear equation, Chaffee and Abel label wA , plus λa⊥  back

into the Lorentz functional, yields a quadratic equation for λ :

a a w a w wA A A
⊥ ⊥ ⊥+ + =, , ,λ λ2 2 0

4-11

4-12

4-13
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which provides a direct solution for λ .

Thus, to summarize the result and combining the two notations:

Z
r

b
w a Z

r

tA

I

I

r r








 = + +











⊥λ ,

where ( )w aA + ≥⊥λ 0  which is from the constraint on the solution vector

w a
r

rA + =










⊥λ
r

r
'

'
.  The quantity b  in Equation 4-14 is called the bias which, used in GPS

equations, represents the offset of time between the master’s and emitter’s time reference.

The vector 
r
r  gives the emitter’s location.

Like all direct solutions, the impact of squaring the TOA equation results in two

possible solutions for the emitter location.  For GPS, this is not a problem since one

solution is on the face of the earth and the other lies opposite to the satellite plane in

space.  In a tactical environment, however, this problem must be solved with some prior

knowledge of the target of interest or with some common sense with respect to the

components which describe the target’s location.

C.  LINEARIZED LEAST SQUARES APPROACH

The linearized least squares approach to the geolocation of an emitter provides a

statistically robust estimate of the emitter’s state and covariance uncertainty estimate.

While the method does require an initial guess with respect to the location of the emitter,

in many cases this can be provided by picking a point in the area of observers or by first

solving for the state via one of the direct methods mentioned above.  Certainly, the

performance of linear least squares algorithms is well-known and stable given that care is

taken into their formulation.  In this regard, JBSTAFSim utilizes a Square Root

Information Filter (SRIF), see Appendix A for a detailed description, which has been

proven to be more numerically stable and accurate than other methods.  In addition, the

SRIF allows for elegantly simple inclusion of prior estimates to be included with the

current state estimate for batch processing as an extended Kalman Filter.  Further a hybrid

linearized least squares solution aided by a direct solution will most likely be the

geolocation method of choice by the ARL:UT system.  In the mixed TDOA/FDOA case,

4-14
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JBSTAFSim also enhances the numerical accuracy of the SRIF solution by scaling the

partials matrix and TDOA and FDOA data so that every equation is dimensionless and on

unity order.  Appendix B contains a detailed description of the scaling of mixed

TDOA/FDOA data in order to improve the numerical accuracy and stability of a linearized

least squares solution.

Consider in detail the mixed TDOA/FDOA problem as described in Reference 19:

Observation equations:

( )

( )

c TDOA r R R

f FDOA r v
v

c

v

c

ij
i j

T ij

i j

⋅ = −

⋅ = −− ℘ ℘

r

r r
r r

( ) ( )

( ) ( )

,1
∆ ∆

Measurement covariance matrix:

M
c

f c
TDOA

T FDOA

=








−

2 2

2 2 2

0

0

σ
σ

Linearized least squares equation:

( )
( )

α α

α α

( ) ( )

( )

( )

( )

( )
( ) ( )

( ) ( )

( ) ( )

j j

j

j

i

i
j i

X

ij

T
ij

i j

i j

X

v

R

v

R

dx

dv

c TDOA
c
f

FDOA
R R

v v

−

−






 −























=
⋅

⋅













 −

−
−









⊥ ⊥

℘ ℘

0

0

0

∆ ∆
∆ ∆

r r
r

r r r

Direction cosines are denoted by α , and R is the observer-target separation.  In

the state vector, dx  and dv  refer to the offset from the position and velocity, respectively,
of the nominal state, and the subscripts ℘  and ⊥  refer to components parallel and

perpendicular, respectively, to the line of sight.  Thus, for mixed T/FDOA, the above

partials matrix is ( )2 1M xN− , where M equals the number of observers and N is the size

of the unknown emitter’s state.  When only TDOA information is used for geolocation,

the partials matrix is reduced to ( )M -1 xN , where N ≤ 3, and, thus, no information with

respect to the target’s velocity can be given.  For the purposes of this thesis, only cases

which are evenly determined are considered.  The overdetermined solutions will most

4-15
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likely always dominate the evenly determined ones; further, this method of analysis

assumes that resources are typically scarce and, thus, the overdetermined case event is

unlikely to occur.  With this philosophy in mind, JBSTAFSim is designed to produce two-

or three-dimensional fixes in the TDOA only case and four- or six-dimensional fixes in the

mixed T/FDOA mode.

In addition to the solution to the state of the target, the linearized least squares

approach also provides an estimate of the error covariance of the state estimate.  Viewing

4-18 as the set of equations Ax b= , the estimate of the state vector takes on the form

( )A M A PT − −
=1 1

.  If we are interested in only the first n components of the solution

vector and take the first nxn components of P  correspondingly; then, given the implicit

assumptions of Normality in the least squares and extended Kalman filter, it can be shown

that:

( ) ( )x P xn

T

n n n− −−µ µ χ1 2~

where µ  represents the true location of the target. Since this covariance matrix

parameterized by n is always positive definite, it can be said that its column vectors form
the basis of the eigenspace Pn  and the corresponding eigenvalues are:  α α1... n .  Thus a

hyperellipsoid defined by:

y y yn

n

1
2

1

2
2

2

2
2

α α α
+ + + =K l

forms surfaces of equal probability densities.  Therefore, for a certain l , the probability

that a point will lie inside the ellipsoid can be computed.  For example, if an n=2

dimensional fix with an l = 3  sigma error ellipse is desired, the ellipse defined by the

covariance matrix would yield an ellipse for which there would be a 99.7% probability that

the target lies inside the ellipse.  Thus, the size of the ellipsoid created by the covariance

matrix can be thought of as a measure of the uncertainty of the solution.

In addition to generating error ellipsoids, the covariance matrix also provides a

means to measure the amount by which the observer geometry is degrading the fix.  This

measurement is often referred to as the geometric dilution of precision (GDOP).  Again,

given that the residuals of the state vector are Normally distributed, the covariance matrix

4-19
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is a measure of their statistical properties.  If these errors are small, a linear approximation

which relates them to the observations may be considered satisfactory.  “Moreover, if the

observation residuals are Normally distributed, the fix residual residuals computed via the

linear approximation are automatically Normally distributed.”[Ref. 15]  In this case the

linear error propagation may be defined from Reference 15 as:

C AMAy
T= .

The total error on the fix as the root-mean-square deviation is

( ) ( )Tr C Tr AMAy
T=

which provides the “total fix position error.”  Dividing this quantity, as suggested above,

by the total measurement error provides an estimate of the  relative dilution of precision:

( )
( )

Tr AMA

Tr M

T

While there is nothing geometric about 4-23, it places all the geometric errors in the

( )AAT  factor separately from the stochastic contribution of Cy .  The relationship

between GDOP, measurement error, and fix error has been described as:

σ σposition measurementGDOP≈ ⋅

Therefore, the GDOP is not truly geometric, but depends on the stochastic portion of the

model.  It is, however, “accurate for quantitative predictions within a class of stochastic

models defined by covariance matrices that are not too different from each

other”[Ref. 15].  Further, it appears that based on the numerical experience of the

ARL:UT test system, that it is a good tool for quantitative prediction.[Ref. 20]  As will be

shown in Chapter VII, while GDOP provides a good relative measure of the geometry, a

better means to measure the degree to which the geometry of the observers is needed.

4-21
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V.  JAVA-BASED STOCHASTIC TDOA AND FDOA SIMULATION
(JBSTAFSIM)

A.  BACKGROUND

JBSTAFSim was written to stochastically explore the differences and similarities

of TDOA and TDOA/FDOA GPS-assisted geo-location solutions.  It assumes a Multi-

platform, GPS-assisted architecture similar to that being developed by ARL:UT as

described in the previous chapters.  JBSTAFSim allows the user to: create scenarios of

various types of sensors and targets defined by straight-forward parameters; distribute

these platforms in a simulated operating environment; dictate solver characteristics for the

linear-least squares formulation; and adjust the measurement error distribution and

correlation.  While the purpose of JBSTAFSim was to mainly explore the differences

between the two types of solutions in the evenly determined case, it could also be used a

tool to investigate and experiment with various solver properties, solution methods, or

algorithms in a variety of cases.  Further, it could simply be used to experiment with

various platform combinations, characteristics, or allocations to provide an understanding

of the system’s strengths, weaknesses, and limitations.  Finally, JBSTAFSim is an object-

oriented program which has been written to be extendible.  Given an understanding of the

model as described in the following sections, the simulation can be extended to satisfy any

of the areas of study discussed above or modified to include more complex sensor or

target models.

B.  DISCRETE EVENT SIMULATION IN JBSTAFSIM

If geo-location of an RF transmitter using TDOA and FDOA techniques was a

straight-forward analytical problem, then a simple closed-form solution could be produced

on paper.  Yet, the signal processing techniques and assumptions presented in Chapter III,

show that any realistic geo-location system is a “system” built on highly complex models

so complex that any one analytic model designed to mathematically represent the whole

system will fail to realistically describe the real-world system.  Simulation, on the other

hand, provides a means to “evaluate a model numerically, and … [gather data] to estimate

the desired true characteristics of the model” [Ref. 23].  Therefore, simulation provides a

means to examine the output measures of effectiveness by numerically exercising the

model with inputs that would violate the assumptions of the analytic model and, thus,
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provide estimates that are more characteristic of the real-world system.  Given this

complex mathematical model which acts dynamically and is influenced by stochastic

components, JBSTAFSim, then, provides an evaluative, numeric tool which can evaluate

and/or estimate the performance of a Multi-platform GPS-assisted geo-location system as

it would perform in a realistic environment—an analysis well outside and beyond the

bounds of that provided by any mathematical formula, theorem, or set of equations.

In Discrete Event Simulation (DES), simulated time only passes when events are

not occurring.  “In mathematical terms, we might say that the system can change [state] at

only a countable number of points in time” [Ref. 23].  Events are listed on a master

schedule in time and priority order.  The entity which passes simulated time and ensures

that events are executed in simulated time is often referred to as the Time Master.  When

no events are occurring, the Time Master simply advances the simulation clock to the

scheduled time for the next event on the event list.  The Time Master then allows that

event to execute; this event may cause other events to execute or be scheduled with the

Time Master.  When the event is complete, the Time Master takes control again and

executes the next event on the event list, advancing time as appropriate.  When there are

no more events left to schedule or execute, the simulation is finished.

While Java is not strictly a simulation language, as Java gains popularity, new

packages are being developed for many Java-based applications, including simulation.

JBSTAFSim utilizes a simulation package named SIMKIT which was developed at Naval

Postgraduate School by LT Kirk Stork, USN, in conjunction with Professor Arnold H.

Buss.  SIMKIT is a package designed to facilitate Discrete Event Simulation (DES).  The

version of SIMKIT used in JBSTAFSim is a development release written in the JDK 1.0.2

and utilizes the version of Object Space’s Java Generic Library (JGL) written for the JDK

1.0.2.  Since SIMKIT is under development, further references to SIMKIT shall refer to

the development release version of SIMKIT used in JBSTAFSim. Detailed information

about the JGL and SIMKIT can be found at www.objectspace.com and

http://131.120.142.115/~stork/simkit_home.html, respectively.

In addition to providing the DES mechanization, SIMKIT also provides a

“RandomStream” class to produce psuedorandom variables.  While Java does implement a

psuedorandom number generator, SIMKIT’s RandomStream class not only provides more

suitably random numbers, but also provides the user a library of random variate

distributions.  JBSTAFSim employs several of these psuedorandom number generators for
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platform movement and makes use of SIMKIT’s random uniform [0,1] generator to

produce the random distributions for TDOA and FDOA measurement errors.

C.  MODEL ASSUMPTIONS

Before going too deeply into model assumptions and sensor models, it is important

to understand that JBSTAFSim was designed to provide a stochastic simulation for the

comparison of TDOA and TDOA/FDOA geolocation systems.  Like any good model, the

model strives for simplicity wherever possible.  As described below, platforms which move

in the simulated environment are fairly simple yet retain their basic qualities which

differentiate them from each other.  Further, the logic of the solver is a very limited to

solving for a target’s position given the data provided by the sensors.  The solver expects

an evenly determined case and it does not accept user guidance during the simulation nor

does it make decisions using a complex algorithm or neural network.  Functions such as

these are those which are assumed to be in place in an operational system. In addition to

assuming a geo-location system which is properly functioning and that the master has

good communications with its slave sensors, the following sections describe the clarifying

assumptions made in JBSTAFSim.

1. GPS Data

First, JBSTAFSim assumes that the platform GPS positions and velocities

represent truth.  For the model, this is a necessary condition since the model must establish

some representation of ground truth.  In reality, this is also a fairly good assumption given

that a survey-grade GPS unit, which is fully Precise Positioning Service (PPS) and

precision (p-code) capable, is implemented in the ARL:UT test platform.  With this type of

equipment, GPS fixes are considered to be accurate to within 10 meters.  With respect to

velocities, the manufacturer of the GPS receiver in the ARL:UT prototype system asserts

velocity measurements accuracy of 0.01 meters per second. [Ref. 24]

As a consequence of using GPS information, the coordinate system used by

JBSTAFSim and the ARL:UT system is the earth-centered-earth-fixed coordinate system

as established by the World Geodetic System of 1984 (WGS84 ellipsoid).  This system

places all platforms in an ellipsoid defined by three coordinates (X, Y, Z) in units of

meters.  In order to assist the user in inputting data and for graphically displaying results,
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JBSTAFSim receives and displays data in coordinates Latitude, Longitude, and Height.

All calculations and results, however, are measured in meters in the WGS84 ellipsoid.

2. Platform Models

The platform models which function in the JBSTAFSim simulated environment

require some clarifying assumptions for each platform’s movement within this simulated

space.  In order to understand how the JBSTAFSim platform models function in the DES

environment, Figures 5-1 through 5-4 depict event graphs for each platform.

a. Ship Model

The ship model retains the most common features of all five platform

models.  Like all platform models, the ship keeps track of its current position and velocity

in earth centered earth fixed coordinates.  The event graph for a ship’s movement is shown

in Figure 5-1.  Upon creation, any ship in JBSTAFSim is provided by the user an

operating box in which to steam.  Also at creation, the ship chooses independent random

uniform X and Y coordinates in this box as its destination.  The ship calculates the amount

of time it will take to arrive at its destination based on its current speed and distance to the

destination.  The ship then schedules an event to create a new destination when it arrives

at the current destination.  In addition to destination events, ships schedule their own

change speed events.  New ship speeds are selected randomly from a uniform distribution

defined by the low and high speed bounds provided by the user.  Occurrences of speed

change events are modeled as events with an exponential distribution with input parameter

provided by the user.  The first speed change event is scheduled upon initialization.  When

a speed change event occurs, in addition to changing the speed of the ship, the waiting

change destination event is canceled and a revised arrival time is computed based on the

new speed of the ship.  A new change destination event is then scheduled for this revised

time.  Finally, the speed change event schedules a new speed change event to occur at a

random time provided by the exponential distribution.
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Figure 5-1.  Ship Model Event Graph.

b. Ground Unit Model

The ground unit model is slightly more complex than the ship model.  The

event graph for the ground unit model is provided in Figure 5-2.  Like the ship model the

ground unit keeps track of its position and velocity and schedules change destination

events and change speed events.  The difference with the ground unit is that it occasionally

ceases to move, or does what is called a “take break event.”  Break events are scheduled

as a random process with an exponential distribution with input parameter provided by the

user.  The length of such take break events are also modeled randomly by an exponential

distribution with input parameter provided by the user.  When a take break event occurs,

in addition to zeroing the speed of the ground unit, the waiting change speed event and

change destination event are canceled.  A revised change destination event is scheduled for

the remaining transit time to the current destination but only after the amount of break

time has elapsed.  Similarly a change speed event is scheduled in an amount of time

provided by the random distribution plus the amount of rest time for the break.  Finally,

after the rest period has elapsed, a take break event schedules another take break event in

a random amount of time provided from the exponential distribution.
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Figure 5-2.  Ground Unit Model Event Graph.

c. Aircraft Model

The aircraft model is more simple.  Each aircraft patrols a circular “orbit”

defined by the circle’s center and radius.  In addition to these parameters, the user also

defines the aircraft’s base height and how much the aircraft deviates from this base.  Since

the aircraft moves around its center in a fixed two-dimensional circle, the aircraft’s speed

is vital to determining where on the circle the aircraft lies.  For any circle with radius r  the

angle θ  at the center of the circle swept by an aircraft traveling along an arc length s  is

simply defined as θ =
s
r

.  The rate at which this angle changes can be simply defined by

the first derivative:  
d
dt r

ds
dt

θ
ω= =

1
.  Since 

ds
dt

 is a measure of the magnitude of the

aircraft’s velocity, v , ω  can be computed as 
v
r

.  With this value of ω , the aircraft’s

position on the circle can be computed as a function of time.  Thus, the aircraft model

need only keep track of ω  and update its value when v  changes.  In order to prevent two

aircraft from having the same or near similar values for θ , each aircraft is given its own

offset angle chosen randomly over the interval [0, 2 Π ].  With this model, an aircraft need
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only update its position on its circular track when polled and then pick a random height

adjustment to make to its base height.  However, when polled, the aircraft must also

update its current velocity state.  In order to compute the current velocity of an aircraft,

the aircraft need only look a very short amount of time into the future and draw a straight

line to this point to set its velocity vector.  With this construct in mind, the event graph

below is simple to understand.  The aircraft need only update positions and velocity when

polled or when a speed change event changes v .  As before, speed change events occur

randomly; are modeled with an exponential distribution; and cause a new speed change

event to be scheduled.

Figure 5-3.  Aircraft Model Event Graph.

d.  Satellite Model

While much could be done to model satellites of different orbital

characteristics, the satellite model in JBSTAFSim is remarkably simple.  The reason for

this simplicity is for the model to serve its purpose as an evaluative simulation.  Certainly,

more complex orbits could be included by extending the current model.  JBSTAFSim’s

satellite model assumes a satellite, or satellites, in a circular orbit with no gap in coverage.

The model only requires the orbit height, starting and ending footprints of the region of

coverage.  Simulating continuous coverage, the satellite flies starting point to endpoint and

returns back to the starting point.  Velocity information need not be entered since, for
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satellites in a circular orbit, the magnitude of the satellite’s velocity is determined by the

height of its orbit:  v
GM
r R

=
+

, where G is the Gravitational Constant in N m
kg

⋅ 2
2 , M is the

mass of the earth, r is the radius (height) of the orbit, and R is the radius of the earth.

Since the satellite’s movement is deterministic, like the aircraft model, satellite position

and velocity are updated only when polled.  Otherwise, the satellite continues across the

sky and returns to its starting point when it reaches the ending footprint point.

Figure 5-4.  Satellite Model Event Graph.

e.  Fixed Model

The simplest of all models is the fixed sensor.  The fixed model’s position

never changes and its velocity is set to zero.  A call to update a fixed object’s position

literally results in nothing happening.  Simply, the fixed model sends its information on

whenever polled and requires no discrete event mechanization.

3. Solver

By using a square root information filter (SRIF) in a linearized least-squares

formulation, JBSTAFSim’s solver assumes that measurement errors are statistically

independent and distributed Normal with mean zero and input covariance.  With some

modification, a weighting matrix that assumes some correlation could be implemented;
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however, since little is known about the true distribution of TDOA and FDOA

measurement errors, an estimate of the correlation seems even more unlikely.

In order to have an initial estimate of the target’s position, the linearized least

squares geo-location solution is started with the results provided by a direct solution.

JBSTAFSim solves this set of equations as described in Chapter IV using a Singular Value

Decomposition routine adapted from Reference 21.  As discussed in Chapter IV, after a

fix is computed, the solver then uses the previous solution as the starting position for the

subsequent solutions until a request is made for another direct solution to update the

current solution.  The periodicity of these updates may be set by the user.  In an actual

Geo-location System, direct solution updates might be requested as a function of many

complex variables and parameters, for instance:  quality of the previous fix, the

dimensionless shock, time since the last fix, by request of the system user, or quality of the

received signal.  While having a set doctrine for computing direct solutions leaves little

room for qualitative decision making algorithms that would exist in the ARL:UT system, it

is a simple abstraction for the simulation given the assumptions already made.  In addition,

by updating the target’s initial “guess” position, the direct solution prevents the model

from losing track of the target if the previous linearized least squares solution was too

great in error.  The difficulty with any direct solution lies in the dual solutions provided as

a result of squaring the TOA equations.  As described earlier in Chapter IV, this ambiguity

is generally resolved with some knowledge of where the target is in relation to the

observers or by simply comparing the two solutions and throwing out the one that is

obviously too distant from the observers.  JBSTAFSim assumes that the operational

system will have several algorithms for resolving this ambiguity, and, thus, always picks

the correct starting point.

4. Measurement Errors

Related to the solver error assumptions, is the actual error mechanization itself.

JBSTAFSim measures precise TOA’s and FOA’s in meters and meters per second.  These

values are differenced from those of the platform designated as the master.  Thus, these

differences are the true TDOA’s and FDOA’s that any sensor would measure in the

absence of measurement noise.  In order to simulate measurement noise, the truth values

are then corrupted by Normal, zero mean random values generated from a distribution
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defined by the user.  The user is free to define the standard deviation of errors across each

TDOA/FDOA measurement.  In addition, the user is allowed to correlate the errors

between TDOA/FDOA measurements.

The production of measurement errors begins by first producing a covariance

matrix using the data provided by the user.  While the user is only concerned with the

correlation of measurement errors between those differences which include the master as a

sensor and not the correlation between slaves, for the three dimensional case, this

correlation must nevertheless be supplied in order to build a covariance matrix from which

to generate random errors.  Further, JBSTAFSim checks this value against the partial

correlation with those errors associated with the master to ensure that the given

correlation vector generates a positive-definite symmetric covariance matrix from which to

generate errors. The covariance matrix is then factored into a lower triangular matrix

using the Cholesky decomposition routine.  Next, JBSTAFSim uses SIMKIT’s uniform

[0,1] generator to produce Normal (0,1) variables using the Box and Muller method.
Calling the Normal (0,1) variables Zi , the correlated errors X i , and the lower triangular

matrix C , the measurement errors are produced from the following algorithm (Scheuer

and Stoller’s method) from Reference 23:

For i n= 1K ,  X C Zi ij j
j

i

=
=

∑
1

Equation 5-1 could be changed to produce non-zero mean random numbers by
simply adding the mean, µi , to the sum on the right hand side.  Equation 5-1 also makes

clear the need for a positive definite covariance matrix since any other matrix could not be

factored into the matrix C .

D.  MODEL DATA PROCESSING

As discussed above, JBSTAFSim assumes a GPS-assisted geo-location system that

is functioning nominally with good communications between all sensors.  JBSTAFSim

sensors are polled and fixes are computed every 10 seconds of simulation time.  While this

poll frequency is not set permanently, it was chosen to correspond in value to that in some

initial tests of the ARL:UT system.  JBSTAFSim never misses a fix or loses

5-1
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communication between sensors since these are not characteristics that JBSTAFSim is

endeavoring to simulate.

The polling, fix, and result comparison process are depicted in the flow-chart in

Figure 5-5 below.

Figure 5-5.  JBSTAFSim Flow Chart.

In addition to scheduling the next poll sensors event, the poll sensors event causes

the target and all sensors to update their positions and velocities.  Sensors, who maintain a

reference to the target, compute their TOA (distance to target measured in meters) and

FOA (line of sight velocity measured in meters per second) to the target.  The slave

measurements are then differenced from the master to form N-1 TDOA’s/FDOA’s.  This

“truth” data is then corrupted by inducing measurement errors that are modeled by a

Normal distribution with zero mean and standard deviation and cross-correlation input by

the user.  This data and the sensor positions are then passed to the solver.  The solver uses

the sensor positions and the current guess of the target’s position to form the partials

matrix for the square root information filter (SRIF).  The SRIF then performs the required

iterations to solve for the target’s position.  These results are sent to a data collector that

compares the solution to the truth position.  The data collector keeps running statistics—

mean, variance, 95% confidence interval half-width, largest and smallest extremes—of the

miss distance, geometric dilution of precision (GDOP), and size of the area of uncertainty.
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Finally, the solver need not be a SRIF.  Due to JBSTAFSim’s object oriented

design, the data returned by all sensors to the master is itself an object which could be

processed by any solver.  This data object consists of  a collection of objects which hold

each sensor’s position, velocity, TOA data, FOA data, and has methods to evaluate the

numerical quantities which make up the partials matrix.  The master’s data is stored in the

first location of this data object vector.  In order to form the “DOA’s” from the data, the

remaining data objects difference their information from the master’s. Of course, in a

linearized least squares formulation, the partials matrix must be evaluated at some point;

this point is supplied by an object which contains the current target estimate position and

velocity.  When the solver finishes its iterations, it returns its solution as this type of an

object.  Thus, any solver coupled to JBSTAFSim need only accept the basic objects in

JBSTAFSim which define position and velocity for any platform.

E.  STATISTICAL RESULT ESTIMATION AND CALCULTAIONS

Since the focus of analysis is centered on the miss distance of the geo-location fix,

JBSTAFSim uses this parameter’s precision for the terminating condition.  Miss distance

is simply the Euclidean distance between two points—the truth position and the solution.

Since both of these points are represented as objects in Java, the calculation of the miss

distance is merely a matter of asking one object the distance to the other.

Thus, JBSTAFSim seeks a precise estimate for the mean of the miss distance.

However, since JBSTAFSim runs for no fixed sample size, the model has no control over

the confidence-interval half-length which directly impacts the precision of the estimate.

Therefore, in order to produce a precise estimate for the mean miss distance and provide a

terminating condition, JBSTAFSim employs relative precision.  Using relative precision as

a terminating condition for the estimation of the mean of a random variable is discussed in

Appendix C and in detail in Reference 23.  The advantage of using relative precision lies in

its ability to provide a precise estimate of the mean miss distance when the sample size is

beyond the analyst’s control.

In addition to fix miss distance, JBSTAFSim keeps statistical information on the

geometric dilution of precision (GDOP) and uncertainty ellipsoid area or volume.

Ellipsoid volume is calculated using the eigenspace as described in Chapter IV, Equations

4-19 and 4-20.  JBSTAFSim employs a Jacobi Transformation algorithm which consists of

a sequence of orthogonal similarity transformations.  Each transformation is a plane
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rotation designed to annihilate one of the off-diagonal matrix elements.  While each

transformation may undo previously zeroed elements, each element continues to get

smaller and smaller until the matrix is diagonal to machine precision.[Ref. 21]  With the

eigenvalues of the estimate covariance matrix, the area or volume of the ellipsoid of

uncertainty can be calculated as described in Chapter IV. GDOP information is

accumulated to rate the quality and consistency of the geometry of the simulation.  GDOP

calculation is a straightforward application of Equation 4-23.

These statistical results and accumulated data are provided to the user through the

model output selections provided by the user at the simulation’s initialization.

F.  MODEL INPUT AND OUTPUT

1.  Input

For any simulation run, JBSTAFSim requires a large amount of initialization data.

The solver needs to know how many dimensions and how many sensors with which it will

be dealing.  In addition the user must set the weights for the TDOA and FDOA data.  In

practice, these weights would be computed on-line by the system using a hybrid of both

equations and algorithms similar to those in Chapter 3 and from experience of the system’s

performance.  The solver can also be set to “batch” mode in which it combines the

information of the previous fixes with the current data to produce a fix.  In addition to

solver information, the user must set the initialization data for each sensor and target—up

to five total platforms.  As discussed above, by inputting the error standard deviation and

error cross-correlation between sensor measurements, the user must also create a

distribution for the measurement errors.

While this amount of  input is extensive, once it is entered, the model takes over

and requires no further guidance by the user.  In order to make the model initialization

process easier, JBSTAFSim allows the user to save the input data to a file specified by the

user.  With this file of initialization data,  the JBSTAFSim simulation run may be

immediately started by simply selecting the input file.  With this construct, any

initialization need only be entered once; further the data stored in the input file is relatively

easy to edit and could be changed in any text editor.
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2.  Output

As the user chooses, JBSTAFSim outputs simulation results to the screen and/or a

data file.  If output to a file is selected, JBSTAFSim returns the results of its simulation to

a file designated by the user.  This file contains the statistical results of three data

accumulators for each solution type.  As described above, the statistical accumulators

keep track of the fix miss distance, GDOP, and size of the uncertainty ellipsoid.  At

simulation termination, the number of data points, mean, variance, standard deviation,

largest and smallest extremes of the data for each accumulator are written to the output

file.

If a graphical display has been requested by the user, JBSTAFSim animates the

simulated movement of sensors and the target while displaying the TDOA and

TDOA/FDOA fixes.  In addition a small summary at the bottom of the animation provides

the current fix miss distance, an updated average miss distance, and GDOP of the current

fix.  As previously mentioned, the graphical display is in the latitude, longitude, height

coordinate system—although height is not displayed in the animation.  The latitude scale

on the left of the screen provides a quick reference for the scale of the display.  Each tenth

of a degree of latitude represents six nautical miles or 12,000 yards.  Thus, given that the

coordinates of each sensor in the simulation is represented by WGS84 Ellipsoid

coordinates on the order of 106 - 107 meters which translates to order 101 latitude and

longitude degrees, and is then translated into integer screen pixels displayed on a small

scale (large area) chart, it should come as no surprise that most platforms in the display do

not tend to move with great speed, especially when fixes are being taken every 10 seconds

of simulated time.

Despite these facts and the fact that the screen images provide little analytical

information, the graphical display does provide a very effective and quick means to

ascertain what is actually happening in the model for both the analyst and for any audience

of the analysis.  Further, the ability to provide such an animated stochastic simulation

across a variety of computer platforms must be considered a true asset for analyst who

must present the analysis to an (any) audience.  Yet, Java is able to deliver not only on this

ability, but also allows the analyst and audience to be separated by thousands of miles with

only the Internet and a Web browser between the two.  Accordingly, the ability for

JBSTAFSim to function as an applet is described in the next chapter.
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VI.  JBSTAFSIM AND THE WORLD WIDE WEB

As its name implies, JBSTAFSim is written in Java—specifically, the first release

of the Java Development Kit (JDK 1.0.2).  Java is an object-oriented programming

language which is currently gaining increased popularity in the programming world.  One

of the reasons Java has become so popular is its run time library which gives Java

bytecode platform independence.  The same code (without recompiling) can be used on

Windows 95, Solaris, UNIX, Macintosh, and so on.  Given the exponential growth of the

Internet, this is a true advantage, if not necessity, for any programming language.  As a

result of this portability, JBSTAFSim can not only run on any of the machines listed above

as an application, but also can run as an applet on any machine using a Java enabled Web

browser.  The JBSTAFSim applet requires no special programming, code, recompilation,

or platform.  It only requires a Web browser, nothing else.  Therefore, due to Java’s

portability, JBSTAFSim can be run and its results examined instantly from anywhere and

on any machine with little overhead.  Thus, Java is a full featured programming language

that provides the ability to be run from the Internet on any machine via a Web browser.

There are many more advantages to programming in Java, but simply stated, it is a simple,

robust, portable, high performance, and dynamic language which allows for efficient,

object-oriented, distributed code.  For a detailed explanation of Java’s design and

accomplishments, Sun has published a “White Paper” which can be found at

“http://java.sun.com/whitePaper/java~whitepaper-1.html.”

Java programs that work within a Web browser are called applets.  The idea

behind an applet is simple:  “users download bytecodes from the Internet and run them on

their own machines” [Ref. 22].   Some might ask why use a Java applet on a Web page to

run programs?  Since Java is a full programming language, it has all the power of any

“true” programming language with the ability to run dynamically on the host computer via

the Internet.  Without Java, if you were to design a “dynamic” Web page that could

respond to a user or a stochastic simulation, each change in the Web page would require

that data be sent to a CGI script on the server.  The script would need to process the data

and send the results back to the browser—probably requiring the creation of a new Web

page on the fly.  This is a horror to program and without a doubt will be slow.  With Java,

once the applet’s bytecodes are downloaded, the power of the programming language is

available to run without updates from the server.  In order to protect the host computer

system from malicious bytecodes, Java implements a “sandbox” that restricts the applet
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from corrupting memory outside the applet’s process space.  In addition, secure Web

browsers, like Netscape Navigator, or browsers that have their security features enabled

by the user (Microsoft Internet Explorer) will prevent applets from writing or reading

local files.  Applets can include graphical user interfaces, can catch mouse movements and

clicks, and can interpret text inputs.  Further, all processing is performed by the user’s

system; thus, the originating server is not continually bombarded with hits for information

and number crunching.  In addition, the user is not hampered by bandwidth when running

an applet (although, bandwidth could be an issue downloading the applet).[Ref. 22]

The power of Java and the applet concept above can be realized within the nature

and abilities of the JBSTAFSim applet itself. Quite simply, the only difference between the

JBSTAFSim applet and JBSTAFSim application is one Java class which declares that it is

an applet and will oversee the events which occur in the JBSTAFSim simulation.  With no

revisions or recompilations, every bit of code that the simulation uses as an application is

used by the applet.  Thus, the full power and stochastic nature of the JBSTAFSim

application can be delivered anywhere to a Web browser via the Internet with precisely the

same code. An illustration of the JBSTAFSim applet running in Netscape Navigator is

shown in Figure 6-1.

As an example of the power, flexibility and utility of this design, consider how the

JBSTAFSim applet is currently configured to run from the World Wide Web.  A user,

somewhere on some operating system with a Java enabled Web browser starts the

JBSTAFSim applet by visiting the appropriate Web page.  This Web page currently exists

on a server which is running on a SPARC clone with NEXT as its operating system.  The

JBSTAFSim bytecodes are retrieved by the server from another SPARC clone which uses

SOLARIS as its operating system.  The JBSTAFSim bytecodes consist of bytecodes

compiled on a Windows-95 system.  This code implements SIMKIT bytecodes which

were compiled on a Macintosh.  Further, the SIMKIT bytecodes implement bytecodes

from the Java Generic Library that were compiled on some system unknown to the author

of JBSTAFSim.  The server, ignorant to all of this, delivers all these bytecodes to the

user’s system for execution in the user’s Web browser.  The point is:  it is irrelevant from

what system the code originated; from where the code is coming; and to where the code is

going for execution.  The bytecodes need only be delivered to the user’s machine which

will locally process the bytecodes’ information quickly and efficiently—all bytecodes run

the same everywhere.
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Figure 6-1  JBSTAFSim Applet in Netscape Navigator

For both the analyst and the audience, this is a powerful tool.  The analyst’s

sponsors can quickly inspect a product or proposal without special software,  hardware, or

large investments of time and money.  Further, the tool is extendible and can be coupled

with other models regardless of the operating system or environment in which they were

originally created.  In the case of JBSTAFSim, in addition to ARL:UT and faculty at
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Naval Postgraduate School, the applet’s audience quickly included the Naval Information

Warfare Activity and other Commander, Naval Security Group offices and activities.

Each activity only requiring a Web browser and a connection to the Internet.  Certainly, in

this light, JBSTAFSim could represent one small component in what has the potential to

be a robust, high-performance, and distributed modeling architecture for the DOD and its

community.
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VII.  SIMULATION ANALYSIS

A.  BACKGROUND

Several simulation scenarios were conducted to evaluate and compare the

performance of both the TDOA and mixed TDOA/FDOA solutions.  Both two

dimensional and three dimensional fix scenarios were conducted.  Within these two cases,

several parameters were varied to quantify their effect on both solution types, including:

measurement  error variance, the correlation between measurement errors, geometry of

the sensor network, and the frequency that the SRIF requests direct solution updates.

B.  TWO DIMENSIONAL GEO-LOCATION SCENARIO RESULTS

The two dimensional case consisted of a sensor network of two ships and a

satellite geo-locating a ship, as depicted in Figure 7-1.  This scenario was run seven times

each for four measurement error correlation values.  The seven runs varied:  the

frequency—continuous, every 10 fixes, and every 20 fixes—of direct solution updates; the

TDOA measurement error variance; and the FDOA measurement error variance.  The

measurement correlation values were:  0.0, 0.1, 0.5, and 0.9 error correlation between all

measurements.  The TDOA measurement error variance was examined for the values of

602 and 302 meters.  The FDOA measurement error variance was examined for the values

of 0.22 meters per second and 0.12 meters per second.  Sensor to target geometry was

mediocre with GDOP averaging 1.5 with minimum and maximum values of 1.3 and 2.6,

respectively.  For reference, the values of 602 meters and 0.22 meters per second for the

respective TDOA and FDOA measurement error variances are approximately equivalent

to those empirically experienced in the ARL:UT system.

1.  Geo-Location Accuracy

Results from these simulation runs are depicted in Figure 7-2 through Figure 7-17

with some summarized information provided Table 7-1.  The distance from the solution’s

position to the target’s actual position—the miss distance—is the primary measure of

effectiveness (MOE), while the area of the 2-sigma uncertainty ellipse is a secondary

MOE.  Thus, the primary MOE is a measure of the solution’s accuracy while the
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Figure 7-1  Two Dimensional Scenario Sensor Allocation

secondary MOE is a measure of the solution’s ability to rate its precision.  In terms of the

miss distance, the primary MOE, Figures 7-2 through 7-8 show that the mixed

TDOA/FDOA solution maintains first order stochastic dominance for each simulation run

which varied the fix update frequency in addition to the cases where the TDOA and

FDOA measurement error variances were contrasted.

a.  Fix Updates

In order to prevent JBSTAFSim’s solution from diverging due to a poor

target estimate, direct solutions are provided at a regular update interval.  This interval
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was varied from continuous updates, to updates after every ten fixes, and for updates after

every 20 fixes.  Clearly, as seen in Figure 7-2, the continuous direct solution updates are

degrading the accuracy of both solutions, but particularly so for the TDOA solution.

These continuous update distributions are so poor, they are dismissed from further

analysis.  Notice that while the TDOA solution and mixed T/FDOA solution are more

similar in the “10 fix update” and “20 fix update” cases,  the “10 fix update” scenario

offers the best shape to this distribution.  This can be seen in the relative location of the

point in the distribution where the curve makes its “right hand turn” in the upper quantiles.

Notice that this location tends to be higher and more to the left in the “10 fix update”

scenario.

Figure 7-2  Comparison of TDOA and T/FDOA Miss Distance Quantiles
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Figure 7-3  Comparison of TDOA and T/FDOA Miss Distance Quantiles

Figure 7-4  Comparison of TDOA and T/FDOA Miss Distance Quantiles
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Figure 7-5  Comparison of TDOA and T/FDOA Miss Distance Quantiles

Figure 7-6  Comparison of TDOA and T/FDOA Miss Distance Quantiles
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Figure 7-7  Comparison of TDOA and T/FDOA Miss Distance Quantiles

Figure 7-8  Comparison of TDOA and T/FDOA Miss Distance Quantiles
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b.  Solution Type Performance

In each scenario above, the mixed T/FDOA case dominates the TDOA

solution.  The T/FDOA solution’s dominance is largest in the upper portion of the

distribution after the characteristic curve as noted above.  In order to show these contrasts

more clearly, Figure 7-9, below, plots some of the scenario results together.  In this figure,

a horizontal line representing the 0.95th quantile is drawn to intersect the solution

distribution curves.  This line intersects the mixed T/FDOA solution, with measurement

error variances of 302 m and 0.22 m/s, 100 meters to the left of the TDOA solution with a

measurement error variance of 302 m.  Thus, there is a significant difference between the

two solution types in the upper areas of their distributions.

Figure 7-9  Comparison of Several TDOA and T/FDOA Miss Distance Quantiles

Even more interesting, notice that the mixed solution curve identified

above (error variances of 302 m and 0.22 m/s) outperforms a mixed solution with an

improved  FDOA error variance of 0.12 m/s and a degraded TDOA measurement error

variance of 602 m.  Further, note that at this quantile, this second mixed solution curve

(error variances of 602 m and 0.12 m/s) has started to dominate the TDOA solution with
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an improved TDOA measurement error variance of 302 m.  Thus, this T/FDOA solution

outperforms that of the TDOA solution in the upper quantiles where either measurement

error or geometry is degrading the accuracy of the fix.  Therefore, despite a larger error

variance in the TDOA measurement errors, a mixed T/FDOA solution provides more

accurate fixes when facing situations that are more difficult for the TDOA solution to

solve by itself.  Thus, the designers or users of a system such as this would desire a larger

reduction the TDOA measurement error variance as compared to that in the FDOA

measurement even though it is the FDOA information which will improve the accuracy of

the fix.

c.  Upper Quantile Performance

The most striking feature of these curves is the sharp, near right-angle turn

that the distributions take at the upper quantiles.  The effect of rotating any of the quantile

plots 90 degrees to the left so that the actual quantiles are on the X-axis make the “right-

angle turn” feature of the distribution appear even more pronounced. With this

understanding of the shape of the distribution, gaining an intuition of the difference

between the two solutions that transcends first order stochastic dominance can be gleaned.

As pointed out, the area in which the two solution distributions differ the most can be seen

in the separation between the curves in the higher quantiles.  In this light, the mixed

T/FDOA solution’s dominance can be applied to the outliers of the distribution.  In the

cases where noise or geometry degrade the TDOA solution, the additional information

from the FDOA measurements increases the accuracy of the T/FDOA solution over that

of TDOA solution.  Thus, it is especially in these cases of bad geometry or large noise that

the mixed solution outperforms the TDOA only solution.  Unfortunately, at each

individual data point, it is unclear from these results whether it is the geometry or the

measurement error which causes the size of the error in the location of the target.  Two

interesting plots of the mixed T/FDOA performance distribution are shown in Figures

7-10 and 7-11  below.  Notice in Figure 7-10 that the lower FDOA measurement error

variance leads to better results as would be expected.  In addition, holding the FDOA

measurement error variance at 0.22 m/s and decreasing the TDOA measurement error

variance leads to a distribution which dominates the other two distributions.  These are not

unexpected results; however, Figure 7-11 turns these results around.  The distribution

with the worst measurement error variance dominates.  Notice that Figure 7-10 displays
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Figure 7-10  Comparison of TDOA and T/FDOA Miss Distance Quantiles

Figure 7-11  Comparison of TDOA and T/FDOA Miss Distance Quantiles



54

distributions where the measurement error correlation is high—0.9; yet, Figure 7-11

portrays the results from 0.0 measurement error correlation.  It is difficult to describe why

measurements with higher error correlation should outperform those with no correlation.

Further, it is not obvious that measurements with a larger error distribution should

outperform those with better measurement data.  Yet, this is exactly what these figures

indicate.  These results lead to two avenues of discussion—geometry and uncertainty.

If the results of Figure 7-10 and 7-11 were functions of geometry, it is not

clear from the GDOP measurements the degree to which geometry is degrading the

accuracy of the fix.  Recall from Chapter IV that GDOP is not really a measure of

geometry but a description of the diagonal elements of the estimate covariance and

weighting matrices.  It is more a measure related to what the system thinks might happen

versus that of what is actually happening in the system.  In Reference 13, Chaffee and

Abel, the authors of JBSTAFSim’s direct solution theory, discuss how the null space of

the direct solution relates to the two roots of the direct solution.  Perhaps, the null space

could provide some information with regard to the geometry of the observers and their

target; however this type of analysis might only describe the geometry of the TDOA

surfaces.  It is more than conceivable that the ability of the mixed T/FDOA solution to be

more accurate in the highest quantiles of the miss distance distribution—the outliers—can

be attributed to cases where the geometry of the TDOA surfaces is poor yet the geometry

of the FDOA surfaces is sufficient enough to improve the mixed solution.  In view of the

shape of the miss distance distributions in the upper quantiles, this theory could describe

the sharp “right hand turn” as described above. The solution to rating the geometry of a

network of observers in relation to their target is beyond the scope of this thesis; however,

JBSTAFSim would be the perfect tool to empirically experiment with this theme of

geometry.  The second issue, fix uncertainty, deserves a section unto itself to describe.

2.  Uncertainty of Geo-locations

If geometry is not all or only part of the answer to the unexplained improvement in

the accuracy of the solution in the presence of correlation, then, perhaps, the uncertainty

of the estimate may provide another avenue to help explore this issue.  Figures 7-12

through 7-17 display the distribution of the area of the two-sigma uncertainty ellipse
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associated with both solution types for the continuous, 10 fix, and 20 fix update scenarios.

In these graphs, the standard span (the area inside the “whiskers”) of the distribution is

drawn at 1.5 times the Inter-Quartile Range beyond the quartiles.  All points outside the

standard span are drawn individually.  With this construction, it is easy to view the density

of the outliers.

When the TDOA solution is compared with that of the mixed T/FDOA solution,

the main difference between the two plots is the density of the outliers.  Another way of

indicating the larger spread of the T/FDOA uncertainty ellipse size is through the

comparison of the standard deviation of this area.  These quantities are summarized in

Table 7-1 below.

Error Continuous Update 10 Fix Update 20 Fix Update

Correla-

tion.

Sigma

TDOA

Sigma

T/FDOA

Sigma

TDOA

Sigma

T/FDOA

Sigma

TDOA

Sigma

T/FDOA

0.0 13571.4 56457.7 5618.3 13197.1 4711 10962

0.1 13175.6 55483.4 5875.9 12765.0 4901  9659

0.5 13389.5 55616.6 5643.1 14718.5 4703  9658

0.9 13708.7 55613.3 5576.7 14228.6 4610 11007
Table 7-1  Distribution of TDOA and T/FDOA Ellipse Size Standard Deviations

First, notice that the ellipse size standard deviations for the mixed T/FDOA

solutions are much larger than those of the TDOA solutions in all cases.  This is confirmed

by the outlier spread and densities in the graphs below.  Second, notice that in the 10 Fix

Update scenario (where the accuracy of the 0.0 correlation was compared to that of the

0.9 correlation in Figures 7-10 and 7-11 above) the solution which produced more

accurate results—0.9 correlation—has a larger standard deviation of ellipse area.
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Figure 7-12  Comparison of TDOA Ellipse Areas by Correlation

Figure 7-13  Comparison of T/FDOA Ellipse Areas by Correlation
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Figure 7-14  Comparison of TDOA Ellipse Areas by Correlation

Figure 7-15  Comparison of T/FDOA Ellipse Areas by Correlation
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Figure 7-16  Comparison of TDOA Ellipse Areas by Correlation

Figure 7-17  Comparison of T/FDOA Ellipse Areas by Correlation
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Now it is possible to tie geometry, error correlation, accuracy, and uncertainty

together.  Clearly, the T/FDOA solution dominates in accuracy; however it tends to have a

larger spread of uncertainty with regards to its results.  Yet, comparing the median and

inter-quartile ranges of the uncertainty ellipse sizes for the two solutions, they are very

similar.  Thus, the mixed T/FDOA solution is able to transcend errors induced by

geometry and measurement errors, possibly induced by correlation, and, thus, provide

more accurate fixes—especially in the upper quantiles of the accuracy distributions.  The

price for such accuracy is reflected in the uncertainty of the estimate.  This should not be

upsetting, and, in fact, proves the robust nature of the Square Root Information Filter.

Since the SRIF reports each solution with no idea with regard to its accuracy (accuracy

requires knowledge of the true target location), it can only rate each fix by the solution

estimate covariance.  Therefore, even though the SRIF provides a more accurate fix, it

correctly reports that measurement errors, error correlation, or geometry are degrading its

confidence in the solution that it has provided.

C.  THREE DIMENSIONAL GEO-LOCATION SCENARIO RESULTS

The three dimensional scenarios included a base line “good” geometry scenario, to

show the effects of error correlation, and the comparison of  a “good” and “bad”

geometry cases to show the effects of sensor allocation on geometry.  No dominance of

either solution type for the three-dimensional case is shown.

Setting up scenarios to compute three dimensional fixes is very difficult.  This

difficulty is due mostly to the geometry of the scenario.  A three dimensional fix requires

four observers in order to form three differences for the evenly determined case.  The

addition of the height dimension, of course, expands both the partials matrix (from a 2x2

to a 3x3 matrix for the TDOA solution and from a 4x4 to a 6x6 matrix for the mixed

T/FDOA solution) and the data vector (from 2x1 to 3x1 and from 4x1 to 6x1 for TDOA

and T/FDOA formulations, respectively) in the linearized least squares formulation.  As a

result each difference pair between slave and master must allocate its position information

from the partials matrix to its respective TDOA and/or FDOA measurement(s).  The

difficulty in geometry arises from the formulation of partial matrices from these difference

pairs that are near singular.  While this is straightforward in theory, it is difficult to explain

concisely to a warrior allocating his or her assets to perform a passive geo-location.

Further, the possibility of the construction of a near singular matrix is not as readily
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apparent when viewing the relative three-dimensional geometry as compared to that of the

two-dimensional geometry.  Finally, and most profoundly for an operational system, this

problem is further exacerbated when one considers that in practice, the warrior may have

little information with regard to the target’s true position and, thus, defining the geometry

a priori becomes an even more difficult task.  Yet, this does not mean three-dimensional

fixes need be abandoned.  The scenarios which depict “good geometry” provide excellent

fixes—many with median miss distances well below 100 meters—that outperform poor

geometry two-dimensional fixes.  The main difficulty with a three-dimensional fix, then,

may be providing the warrior with the means to optimally allocate his or her assets.

1.  Good Geometry Results

The good geometry scenario consisted of a sensor network of two ships, an

aircraft, and a fixed sensor targeting a ship.  A visual depiction of the scenario is provided

in figure 7-18.  This scenario was run for 20 measurement error correlation values from

-0.9 to 0.95.  For the purposes of identifying the correlation combinations, a simulation

run labeled with a negative correlation value actually means that within the three TDOA

measurements and within the three FDOA measurements, two measurements are

correlated negatively by a magnitude equal to the positive correlation of the other pair of

measurements.  For example, if measurements 1 and 2 were negatively correlated, then

measurements 1 and 3 would be positively correlated while measurements 2 and 3 would

be negatively correlated.

The results of this scenario are multifaceted.  First, restricting the sensors and the

target into very tight boxes ensured that the geometry of the TDOA measurements would

be almost always perfect.  Thus, the TDOA measurements dominated the solution with

regard to the position of the target.  Therefore, the identical results of both the TDOA and

T/FDOA solutions proves the stability and accuracy of the mixed solution’s square root

information filter—a particularly gratifying result given the formulation, scaling, and

un-scaling of the linearized least squares equation as described in Chapter IV and

Appendix B.

The surprising result, as depicted in Figure 7-19, is the improvement in the

accuracy of the solution as the correlation between measurement errors increases.

However, upon inspecting Figure 7-20, the opposite is true of the distribution of the

volume of the uncertainty ellipses.  Given the results from the two-dimensional case
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discussed above, this is no longer a surprise.  While the SRIF has no idea that it is

producing more accurate results in the highly correlated noise environment, it is robust

enough to realize that the measurement errors which it is encountering are deviating from

what the weighting matrix had told it to expect.  The SRIF produces the best fix it can;

yet, it honestly reports, in the uncertainty of the fix, that the measurement errors are not

indicative of what it had expected.

Figure 7-18  Geometry of Basic Scenario
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Figure 7-19  Comparison of Miss Distance Distributions by Correlation

Figure 7-20  Comparison of Ellipse Volumes by Correlation
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Figure 7-21  Comparison of Miss Distance Distributions by Correlation

2.  Comparison of Good and Bad Geometry Scenarios

As described in the introduction to this section, the geometry of the observers

relative to their target is crucial for an accurate three-dimensional solution.  Figures 7-22

and 7-23 show the configurations of the “bad geometry” and “good geometry” scenarios

for this illustration, respectively.   Figures 7-24 and 7-25 show the quantile distributions of

these two scenarios.

Examining the distribution of sensor platforms in Figure 7-22, it is not clear—even

with the position of the target known—that this allocation of sensor assets would lead to a

“bad geometry” scenario; yet, the GDOP in this scenario averaged 222 with minimum and

maximum values of 149 and 1472, respectively.  Compare this to the “good geometry

scenario in Figure 7-23 whose GDOP averaged 0.8962 with minimum and maximum

values of 0.8874 and 0.91277, respectively.  Without this data from the simulation runs, it

would have been impossible to predict these results.  Neither case appears exceptionally

threatening from the geometry standpoint; yet, it will be the scenario’s geometry that

directly impacts the accuracy of the geo-location solution.
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Figure 7-22 Bad Geometry Case
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Figure 7-23 Good Geometry Case
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Figure 7-24  Good Geometry Miss Distance Distribution

Figure 7-25  Bad Geometry Miss Distance Distribution

Upon examining Figures 7-24 and 7-25, the possible impact of poor geometry on

the accuracy of the three-dimensional solution becomes clear.  An explanation of what
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makes the “good geometry” case “good” is required.  In terms of sensors, the difference

between the cases is the replacement of one of the aircraft observers from the “bad” case

with a satellite in the “good” case.  Given its altitude, the satellite is able to create a better

three-dimensional surface when its position is differenced from that of the master.  As a

result, the satellite “sees” height better than that of the aircraft who may as well be on the

surface of the earth in comparison to the satellite’s height.  The partials matrix, then,

contains more useful information with regard to the third dimension.  Thus, the surface

defined by the difference of the satellite’s and the master’s information is better suited to

complement the other surfaces formed by the other observers and, therefore, can provide a

more accurate fix with this “good geometry” of measurement surfaces.

The second obvious feature when examining Figures 7-24 and 7-25, is that, like

the first good geometry case in the previous section, both the TDOA and T/FDOA miss

distance distributions are identical.  In this analysis, the author was not able to produce a

case where the T/FDOA solution stochastically dominated the TDOA solution.  While the

construction of such a case may be possible, performance of both solutions would most

likely be highly dominated by the quality of sensor geometry versus that of sensor

measurements.  Further, while individual cases can be shown where a single TDOA or

mixed T/FDOA solution was obviously better than that of the other, the author was not

able to show that this lead to the stochastic dominance of either solution type.  Thus, the

solution to improving three-dimensional fixes does not appear to be in the augmentation of

FDOA information; however, FDOA information did not on the whole appear to degrade

the distribution of the three-dimensional solution either.  The consequences from these

results lead to two avenues of discussion:  solution formulation and sensor selection.

A solution to improving the three-dimensional fix may be simply collapsing to two-

dimensions.  This analysis has limited itself to the exploration of solutions in the evenly

determined case.  Yet, it is likely that most overdetermined two-dimensional solutions will

dominate or at least do as well as those in the evenly determined case.  In the

overdetermined case, it has not been shown to what extent FDOA information could

improve or degrade the solution.  Likewise, the quality of a three-dimensional fix from an

overdetermined sensor network with more than four observers has not been shown.  Yet,

having a plethora of sensors to distribute at will seems overly optimistic and would not

suit the warrior who desires to  know a lower bound on the performance of his or her

equipment.  Yet, these are both important analysises which should be performed to

understand the operational capabilities of the true system.
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On the other hand, if the utility for a  three-dimensional fix is high, then the warrior

who needs such high quality information should be concerned with the selection of robust

three-dimensional assets.  In particular, in this analysis it has been shown that the satellite

is an excellent sensor to assist in observing height.  Yet, it was also seen in two-

dimensional simulation runs that in the rare case when a satellite passes directly overhead

the target, it can say little about the target’s two dimensional location since the satellite

only “sees” height.  Again, the proper allocation of assets sometimes may be out of the

warrior’s control.  Given that satellite coverage may not always be available, another

three-dimensionally robust sensor might be one of the prototype unmanned aerial vehicles

(UAV’s) that is designed to operate at very high altitudes for long periods of time—for

example,  the Tier II+ Conventional High Altitude Endurance (HAE) UAV (Global Hawk)

or Tier III-Low Observable HAE UAV (Dark Star) both of which advertise surveillance

altitudes greater than 18 kilometers and 12 kilometers, respectively.  Note that the first

three-dimensional “good geometry” scenario only used one aircraft.  Further, both UAV’s

and satellites may be less obtrusive ways of improving the sensor to target geometry when

airspace restrictions or the requirement for the concealment of sensors dictate that the

traditional sensors would not suffice.

Like most decisions a military commander must make, the selection and allocation

of sensors to perform passive geo-location is not a straightforward choice.  Yet, further

analysises of like those suggested above could assist the warrior in this decision process.

Again, a good tool for exploring any of these issues would be a slightly modified version

of JBSTAFSim.
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VIII.  CONCLUSIONS AND RECOMMENDATIONS

A.  CONCLUSIONS

A simulation based methodology was used to explore the differences between geo-

location solutions computed using both time-difference-of-arrival (TDOA) and mixed

TDOA and frequency-difference-of-arrival (FDOA) techniques using a Multi-platform,

GPS-assisted architecture.  This methodology assumed no one method to measure either

the TDOA or FDOA; yet, allowed for the stochastic modeling of the errors in such

measurements in such a general way that they could apply to any TDOA or FDOA

measurement process.  Likewise, the platforms which measure such quantities were

modeled in abstract ways, yet retained each platform’s most basic behavior.  In addition,

the simulation portrayed joint platforms operating together in a joint operating

environment.  To enhance the numerical veracity of the solutions, the simulation

implemented a numerically stable Square Root Information Filter (SRIF) which received

initial target estimates based on a numerically stable direct solution implementing the

Singular Value Decomposition routine.  These numerically robust methods were used to

provide the most numerically stable and accurate solutions possible in the face of poor

sensor geometry and computer round-off error.  Data taken during the simulation

included:  the solution miss distance from truth, the area or volume of the 2-sigma ellipse

centered around the solution, and the geometric dilution of precision (GDOP).  The

analysis focused on the accuracy of the solutions represented by the fix miss distance, and

the solution uncertainty, represented by the volume or area of the 2-sigma ellipse around

the fix.

1.  Two Dimensional Conclusions

In the two-dimensional problem, it was shown that a mixed T/FDOA solution

maintains first order stochastic dominance over the TDOA solution in mediocre geometry.

The price the mixed solution pays for this increased accuracy is a large increase in the

spread of its fix uncertainty; however, both solutions maintained roughly the same

partitioning of fix uncertainty around the center of their respective uncertainty

distributions.  Therefore, increasing the spread of the uncertainty distribution remains a

small price to pay for the increased accuracy of the solution.  The largest difference
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between fix accuracy was seen in the upper quantiles of miss distances where the mixed

T/FDOA solution significantly improved the solution fix accuracy over that of the TDOA

solution.  Thus, the FDOA surfaces appear to substantially improve the solution accuracy,

especially when the TDOA surfaces would lead to poor fixes.

In addition to the contrasts between solution types, it was also shown that while

the direct solution prevents the linearized least squares solution from diverging, the

amount to which the SRIF was updated by the direct solution significantly impacted the

accuracy of both solution types.  In particular, solutions which used the direct solution as

an initial estimate for every fix were so poor, their results were disregarded.

2.  Three Dimensional Conclusions

As an exploration into the impact of correlated errors, measurement error

correlation was varied across 20 values in a good geometry scenario.  While both

solutions produced more accurate results in the higher, positively correlated cases, the

solutions also indicated more uncertainty in these fixes.  Again, this confirmed the robust

nature of the SRIF formulation.  These results are useful since the actual system would

implement sensors taking measurements in a common operating environment with

common noise characteristics, thus, most likely creating similar measurement errors.

The three-dimensional simulations did not show stochastic dominance of either

solution type.  While some simulations showed differences in the accuracy of individual

solution type fixes, neither solution type was shown to stochastically dominate the other.

Results which produced identical accuracy distributions for both the TDOA and mixed

T/FDOA solutions across several scenarios proved the stability of the algorithm which

solves the mixed T/FDOA solution.  The inference drawn from these simulations was that

geometry, more than solution and measurement type, impacts the accuracy of the three-

dimensional fix solution.  Therefore, the choice of sensors which can more optimally

measure three-dimensional information should be the first concern for those who require

such fixes.  In particular, it was shown that sensors with high altitude characteristics are

well-suited for this task.
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B.  RECOMMENDATIONS

1.  System Use and Design

The Multi-Platform, GPS-Assisted TDOA Geo-location System as designed by the

Applied Research Laboratories, University of Texas, Austin is a robust and potentially

highly functional passive geo-location system for both the Navy and the Department of

Defense.  FDOA information can be safely added to the geo-location formulation to

augment the TDOA information for the solution of the target’s location.  In the two-

dimensional solution case, the FDOA information can significantly improve the accuracy

of the geo-location.  In the three dimensional case, the additional information does not

appear to degrade the system’s performance in any significant manner.

The linearized least squares formulation in the SRIF appears to be a very stable

and robust formulation for solving the geo-location problem.  The system which

implements this formulation should implement some direct solution or other means to

provide an roughly accurate estimate of the target’s location to start the SRIF’s solution

iterations.  While the actual system would not be computing the large number of fixes for

one target that were required in this stochastic analysis, a means to periodically update the

SRIF with a new target estimate should be implemented.  Further, the actual system would

need to request this information based on signal characteristics, computation of the

dimensionless shock, or some combination of both solver and signal properties.  In

addition, such an algorithm might be able to re-weight the partials matrix in the presence

of correlated noise.  The ability to chose a more optimal measurement covariance matrix

would significantly improve the fix estimate covariance and, thus, decrease the uncertainty

of the estimate of the target’s location.

An avenue to improving three-dimensional fixes was shown to be through the use

of platforms which can measure height information more reliably.  This consequence leads

to two recommendations.  First, the ARL:UT system should be incorporated and tested on

satellite systems and as a potential payload for prototype UAV platforms.  Second, since

this matter is at its crux a geometry issue, a new method to rate the geometry of the sensor

network, other than GDOP, should be pursued.  For the warrior, in particular, such a

method should be able to assist in rating the sensor network’s geometry given possible

locations of the target.  Such a method would allow the commander to allocate his or her
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assets in an pseudo-optimal way given either possible locations of the target or given no a

priori information with regard to the target’s location.

2.  Java-Based Stochastic TDOA and FDOA Simulation

JBSTAFSim proved itself as a robust stochastic simulation for the analyses

presented in Chapter VII.  In order to study any of the proposed areas above, modified

versions of JBSTAFSim would provide the perfect tool for the analysis of any of these

issues.  In addition, JBSTAFSim could be modified so that specific platforms or platform

characteristics, for example a particular type of satellite orbit, could be evaluated for its

ability to contribute to the geo-location solution.  In addition, due to time and scope

limitations, JBSTAFSim’s “batch mode” option for its solver was never stochastically

tested with a static target.  JBSTAFSim requires more programming so that it can make

qualitative decisions with regard to the frequency with which it resets its batch mode

solver.

Investigating solution types in both the overdetermined two-dimensional and three-

dimensional cases should be undertaken.  While it is likely that these solutions would

dominate the evenly determined ones, it is not clear to what extent FDOA information

might affect these solutions.  This would be a particularly interesting study given that

overdetermined, “bad geometry” three-dimensional fixes could potentially be collapsed to

more accurate overdetermined two-dimensional fixes.  With some effort JBSTAFSim

could be modified to analyze this issues.

Next, JBSTAFSim has modeled both the TDOA and FDOA measurement errors

as Normally distributed random variables.  The Normal distribution was implemented for

its ease in the ability to generate correlated random variables on a computer and, as

presented in Chapter III, due to the fact that any measurement error distribution is in itself

a function of many random variables which change over a variety of system configurations

and environmental characteristics.  Quite simply, the true distribution is neither known nor

can it be known; yet it can be modeled.  To that end, modeling the measurement errors

with another distribution would prove an interesting test for the SRIF and would be

relatively straightforward to implement in JBSTAFSim.  Investigating the solution

accuracy and uncertainty using either distributions that are either “heavy tailed” or skewed

would be worthy endeavors.  Likewise, extending JBSTAFSim’s solver to create a non-

diagonal measurement error covariance matrix might prove useful in any of these analyses.
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Of the many possibilities that exist for the extension of JBSTAFSim, one final

possibility could be of particular interest.  Given its design and network aware capabilities,

JBSTAFSim’s existing modular design could be modified so that it receives actual TDOA

and FDOA measurements and sensor information via a network.  JBSTAFSim’s solver

would then compute the geo-location and display the results on a local computer or back

to the network to be displayed on another host’s computer using only a Web browser.

While achieving this vision requires the resolution of many security issues, Public Key

Encryption and secure sockets capabilities within the Java language itself are already being

implemented in the latest version of Java.  Further, this concept again shows the “flat”

architecture that is innate in models created in Java.  With very little cost to the user or

developer, rich capabilities are immediately available to the model which can function

across many platforms in a very robust nature.
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APPENDIX A.  SEQUENTIAL SQUARE ROOT DATA PROCESSING
ALGORITHM AND THEORY

The purpose of this appendix is to describe both the underlying theory behind the

square root information filter (SRIF) and the sequential data processing algorithm which

exploits this theory.  A basic understanding of solving linear least squares problems is

assumed, but is not essential.  The primary reference of this section is Reference 16 thus,

notation will be presented as similarly as possible.  In essence this section will provide a

quick summary reference of the SRIF algorithm as described in detail in Reference 16.

For the most part, all applicable ideas and examples presented here will be identical to

those in Reference 16.

A.  CONTEXT OF THE PROBLEM AND REVIEW OF LEAST SQUARES [REF.

16, 14-16]

With regard to geolocation in a F/TDOA problem, the most basic sequential linear

least squares system of equations is defined as:

( )
0

00

x

F

X
z F xx x

∂
∂







⋅ − ≅ −





r

Where ∂
∂

F
X  represents the TDOA partials or mixed F/TDOA partials evaluated

at the state update x0 .  This MxN matrix is multiplied by the state step N vector ( )x x− 0

which is approximately equal to the M data vector z minus the TDOA or F/TDOA
functional M vector evaluated at x0 .

A-A1
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From Chapter IV and for reference, the TDOA/FDOA equations are provided

below.

Observation equations:

( )

( )

c TDOA r R R

f FDOA r v
v

c

v

c

ij
i j

T ij

i j

⋅ = −

⋅ = −− ℘ ℘

r

r r
r r

( ) ( )

( ) ( )

,1
∆ ∆

Measurement covariance matrix:

M
c

f c
TDOA

T FDOA

=








−

2 2

2 2 2

0

0

σ
σ

Linearized least squares equation:

( )
( )

α α

α α

( ) ( )

( )

( )

( )

( )
( ) ( )

( ) ( )

( ) ( )

j j

j

j
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i
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v
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v
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−

−






 −
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⋅

⋅













 −

−
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⊥ ⊥

℘ ℘

0

0

0

∆ ∆
∆ ∆

r r
r

r r r

Direction cosines are denoted by α , and R is the observer-target separation.  In

the state vector, dx  and dv  refer to the offset from the position and velocity, respectively,
of the nominal state, and the subscripts ℘  and ⊥  refer to components parallel and

perpendicular, respectively, to the line of sight.  The symbols c  and f T  refer to the speed

of light and the frequency of the transmitter.  Of course, the dimension of the state here is

6, not 2 as it appears, because all the elements on the left side of the equation are

vectors.[Ref. 19]

For simplicity, let us now consider A-A1 as the set of equations:

 Ax z
r r+ =ν A-A2
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 Here the partials matrix in A-A1 is represented by the MxN matrix A ; the state step by the

vector x ; and the functional and data difference by is represented by the vector z .  We also

introduce ν  to represent the M vector of observation errors.  The least squares solution to

minimize the mean square observation error is defined as:

( )J v j
j

m T= =
=∑ 1

2 ν ν

Or, in terms of x :

( ) ( ) ( )J x z Ax z AxT= − −

Thus, ( )J x  is non-negative and quadratic in the components of x so that the necessary and

sufficient conditions for a minimum require that x satisfy the normal equations:

A Ax A zT T=

A-A5 leads to the well-known least-squares solution xls :

( )x A A A zls
T T=

−1

Statistically, if we assume, for now, that the observation errors, ν , are random

variables that have been normalized so that:

( )E ν = 0 and ( )E IT
Mν ν =

A-A5 then becomes:

A Ax A z A Ax AT
ls

T T T= = + ν

A-A8 allows us to make two important conclusions about our least squares

solution.  First, that ( )Ε x xls = ; thus it xls  is an unbiased estimate.  Second, the estimate

error covariance can be evaluated by:

A-A3

A-A4

A-A5

A-A6

A-A7

A-A8
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( ) ( )( )[ ]( ) ( )A A E x x x x A A A E AT
ls ls

T T T T− − = νν

A-A9 simplifies so that we get a recognizable estimate for Pxls , defined as estimate

error covariance:

( )( )[ ] ( )P E x x x x A Axls ls ls

T T= − − =
−1

Where P A Axls
T− =1 is defined as the information matrix, Λ x .

B.  A PRIORI INFORMATION [REF. 16, 16-17]

Now suppose that in addition to the linear system A-A2, there exists an a priori

unbiased estimate of x and Λ , defined as ~x and 
~Λ .  This information can be included in

the least squares solution by changing A-A4 to:

( ) ( ) ( ) ( ) ( )J x x x x x z Ax z AxT T
1 = − − + − −~ ~ ~Λ

Again, like A-A5, the minimizing argument for ( )J x1 , now define as $xls , is defined

by satisfying the normal equations:

( )~
$

~~Λ Λ+ = +A A x x A zT
ls

T

From A-B2 and being reminded that ( )x x− ~ and ν  both have mean zero, a similar

construct to A-A8 can be written to prove that $xls is unbiased.  Further, assuming that the

observation “noise” and the a priori estimate errors are independent ( )[ ]( )E x x T− =~ ν 0 ,

then like A-A9 and A-A10 we obtain the estimate error covariance:

( )( )[ ] ( )P E x x x x A Axls ls ls

T T
$ $ $

~= − − = +
−

Λ
1

Notice how A-B2 and A-B3 reduce to A-A5 and A-A10 when 
~Λ = 0 , i.e. there is

no a priori information.

A-A9

A-A10

A-B1

A-B2

A-B3
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C.  A PRIORI INFORMATION AS ADDITIONAL OBSERVATIONS [REF. 16,

17-18)

Given that factorization of a positive semi-definite matrix is always possible, factor
~Λ  so that 

~ ~ ~Λ = R RT .  
~
R T  is called the square root of 

~Λ .   Square root matrices are not
unique, but are related by orthogonal transformations.  For example, if S1 and S2 are

square roots of a positive semi-definite matrix, then P S S S ST T= =1 1 2 2 , there exists a

matrix T such that S S T2 1= and TT T T IT T= = .

With this factorization in mind, let ~ ~~z Rx=  and write:

( ) ( ) ( ) ( )~ ~ ~ ~ ~ ~ ~x x x x z Rx z RxT T
− − = − −Λ

Compare these results to ( )J x  in A-A4 and one can glean that a priori estimate-

covariance information can be interpreted as additional observations in the least squares
solution.  Therefore, ( )J x1  in A-B1 can be viewed as simply applying the least squares

functional ( )J x to the augmented system:

~ ~ ~z

z
R

A
x

v

v








 =









 +











A-C2 is a recursive result since the previous estimate and covariance are combined

with the new data to form an updated estimate and covariance.  Numerically significant is

that the estimate covariance results do not depend on which square root was used—

allowing the selection of square root matrices that are simple to compute and enhance

numerical accuracy.

D.  HOUSEHOLDER ORTHOGONAL TRANSFORMATIONS [REF. 16, 57-62]

In section C, we made a brief reference to orthogonal transformations.  SRIF

depends on the Householder orthogonal transformation.  An understanding of this

transformation is vital in order to understand the SRIF mechanization.

First, a review of orthogonal matrices.  A matrix T  is orthogonal if TT IT = .

Four properties useful to know about orthogonal transformations are:

A-C1

A-C2
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A.  If T1  and T2  are orthogonal, so is T T1 2 .

B.  T T T− =1  and T T IT = .

C.  For any M vector y , Ty y=  where ⋅   is the Euclidean norm.

D.  If ν is an M vector of random variables with ( )E ν = 0 and ( )E ITνν = ,

thenν ν= T  has the same properties as ν , namely: ( )E ν = 0 and ( )E ITνν = .

Recall from A-A4 that for MxN A , ( ) ( ) ( )J x z Ax z Ax z AxT= − − = − 2 .  Define

T to be a MxM orthogonal matrix and, using Property C from above, we have:

( ) ( ) ( ) ( )J x T z Ax Tz TA x= − = −2 2

Since, xls  is independent of T , T  can be chosen so that ( )TA  has a

computationally attractive form such as:

TA
R n

m n
=









 −


0

Where R is an upper triangular matrix.  If Tz  is partitioned,

Tz
z

z

n

m n
=









 −




1

2

then ( )J x can be written as:

( )J x z Rx z= − +1

2

2

2

From A-D4, one can see that the minimizing xls  must satisfy Rx z= 1  and that

( )J x zls = 2

2
.  These results have been proved to be less susceptible to errors due to

computer round-off in References 17 and 18.  From above, we see the applicability of

orthogonal transformations to the least squares problem.  Let us now focus on an

orthogonal transformation that will assist us in the results from section C.

A-D1

A-D2

A-D3

A-D4
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Householder transformations are matrix representations corresponding to the
geometric notion of a reflection.  Let u  be a nonzero vector and let U⊥  be the plane

perpendicular to u .  If y  is an arbitrary vector,

( )y y u u vT= +$ $

then the reflection  of y  in the plane U⊥  is equal to:

( )y y u u vr
T= − +$ $

where $u is a unit vector in the direction of u  and v  is that part of y  that is orthogonal to

u .  See Figure A-C1.  Eliminating v  from both equations gives:

( ) ( )y y y u u I uu yr
T T= − = −2 $ $ β

where β =
2

2u
.  The matrix T I uuu

T= − β  is the elementary Householder transformation.

Figure A-C1 shows the geometry of the Householder transformation.

v

y -y

y

u

y

U

Tuy

r

r

Tuy

Figure A-C1

Five properties of this Householder transformation, Tu , are important to us.

1.  Tu  = Tu
T , Tu  is symmetric.

2.  T Iu
2 = , Tu  is idempotent.  (Combined with Property 1 shows that Tu  is

orthogonal.)

A-D5

A-D6

A-D7
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3.  If ( )u j = 0  then ( )( ) ( )T y j y ju = , rather, if the jth component of u  is zero, then

Tu  leaves the jth component of y  unchanged.
4.  If u y⊥  then T y yu = .

5.  T y y uu = − γ , where γ = 2y u u uT T .  This is practically a time and storage
saver since forming and storing Tu  prior to computing T yu  requires more
computation than the direct evaluation using this property.  If M is large this
could be particularly helpful.

6.  Let ( )( ) ( )σ = ⋅sgn y y yT1
1

2  and define ( ) ( )u y1 1= + σ ,  ( ) ( )u j y j j= >, 1.

Then T y eu = −σ 1  and ( )( )2 1 1u u uT = σ .

Property 6 allows us to choose a direction of u  so that y T yr u=  lies along e1

which gives ( )T yu

T= σ , , ,0 0K .  This is the first step in matrix triangularization.  Since

Property C in our orthogonal transformation review assures us that the length of y  is

invariant, therefore ( )T y y yu
T= =σ

1
2 . The direction of u  can be obtained from

Property 5 above:  ( )u const y e= − σ 1 , which explains Property 6 again− ( )u u uT = 2 1σ .

Refer back to Figure A-C1; note y yr −  is orthogonal to U⊥  and so is parallel to u .  Also

note, in Property 6, that the sign of σ  is chosen to maximize ( )u 1  this assists in reducing

numerical problems when Tu  is applied to the columns of A  as ( )1 1σu .

If Property 6 is applied to an MxN matrix A  (with y  as its first column) the first

step of a matrix triangularization results.

{
{

} }

T Au

n

m

s A=















−

−

1

1 0

1 1

~

Note that via Property 6, s  and 
~
A  are computed directly from A  and the matrix

Tu  is implicit—never calculated.  Repeated application of Property 6 and the results of

A-C8 to the columns of A  results in a series of orthogonal transformations which

combine into one orthogonal transformation, T  (by Property A of orthogonal

transformations) and can be written as:

A-D8
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TA

s

s

s

a

a

a

A
k

T

T

k
T

k

=























+

1

2

1

2

1

0
O M

E. THE SRIF DATA PROCESSING ALGORITHM [REF. 16, 69-72]

The last four sections now culminate into the SRIF Data Processing Algorithm.

This method is reputed to be more accurate (less susceptible to the effects of computer

round-off errors) and stable (accumulated round-off errors will not cause the algorithm to

diverge) than other conventional non-square root methods.

Begin by supposing that we have an a priori array from A-C1 [ ]~~Rz  corresponding

to the equation ~ ~ ~z Rx v= +  where ~v has zero mean and unity covariance and 
~
R  is NxN.

We are interested in constructing the least squares solution to the a priori data equation

and the new measurements z Ax v= + .  In section C equation A-C2, the least squares

solution was described as:

~ ~ ~z

z
R

A
x

v

v








 =









 +











In section D, this was seen to be equivalent to finding the least squares solution to:

T
R

A
x T

z

z
T

v

v

~ ~ ~







 =









 −











Further, section D showed that T  can be chosen so that:

T
R

A

R
~ $







 =











0

A-D9

A-E1

A-E2

A-E3
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where $R  is an upper triangular matrix and we set:

T
z

z

z

e

~ $







 =









  and T

v

v

v

ve

~ $







 =











Then A-E2 becomes:
$ $ $Rx z v= −

 and
0 = −e ve

A-E4 is in the form of a data equation and can now act as the a priori data

equation that will be combined with the next set of observations.  The e  in A-E5 is the

error in the least squares fit; recall from A-D4:

( )J x Rx z e= − +$ $
2 2

Thus, e 2  is the sum of squares residual error corresponding to the least squares solution.

The algorithm then requires the construction of the augmented information

array
~ ~R z

A z









  and then can be expressed as follows (letting the a priori information array

equal to [ ])~ ~R z0 0 :

T
R z

A z

R z

e
j mj

j j

j j

j j

j

$ $ $ $
, , ,

− −











=












=1 1

0
1 K

where [ ] [ ]$ $
~ ~R z R z0 0 0 0=  and Tj  orthogonal to triangularize the matrix

$R

A
j

j

−











1
  Thus,

$ $x R zj j j= −1  is the least squares estimate corresponding to the a priori information and the

measurement set, and $ $ $P R Rj j j
T= − −1  is the covariance of this estimate.  Note that because

$R j  is triangular, the calculation of these two estimates can be easily accomplished using

back substitution methods.

A-E4

A-E5

A-E6

A-E7



85

F.  WHITENING OBSERVATION ERRORS [REF. 16, 47-49]

Early in section A, equation A-A7 asserted that ( )E IT
Mν ν = .  We now consider

the case where ( )E PTν ν ν=  where Pν  is positive definite.  We know, then, that we can

write this matrix as:

P L LT
ν ν ν=

where Lν  is a lower triangular square root of Pν .  Now we can multiply the observations

by Lν
−1  and the observation set will have unit covariance observation error.  Thus the

familiar Ax z+ =ν  is transformed to Ax z+ =ν  with:

z L z= −
ν

1 ,   A L A= −
ν

1 ,   v L= −
ν ν1

In the TDOA and TDOA/FDOA case we assume that the observations are uncorrelated,

but the ith observation error has variance σ i
2 .  Thus, ( )L Diag mν σ σ− =1

11 1/ ,... / .

Therefore, our augmented matrix takes on the form:

~ ~R z

L A L zν ν
− −









1 1

As a side note, Reference 16 includes a description of the case where observations are

correlated.

A-F1

A-F1
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APPENDIX B.  MIXED TDOA/FDOA SCALING

The purpose of this appendix is to discuss the scaling of mixed TDOA and FDOA

partials, covariance and data in the linear least squares formulation.  What follows is a

summary of and the examples directly from an unpublished work by Dr. Brian Tolman at

ARL:UT, Reference 19.

First, consider the usual linear least squares formulation with measurement

covariance M  as described in Ref. 19:

( )
( )

AX B

X A M A A M B

C A M A

T T

T

=

=

=

− − −

− −

1 1 1

1 1

where,

A
F
X

B D F X
X

=

= −

∂
∂

0

0( )

Dr. Tolman then considers two arbitrary diagonal matrices to re-scale the problem.

S diagonal mxm

S diagonal nxn

A S AS

X S X

B S B

M S MS

1

2

1 2

2
1

1

1 1

=
=

=

=

=

=

−

( )

( )
~

~

~

~

The problem and its solution then become

B-1

B-2

B-3

B-4

B-5

B-6

B-7

B-8

B-9

B-10

B-11
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( ) ( )
( ) ( )

~ ~ ~

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~

AX B

X A M A A M B S A M A A M B S X

C A M A S A M A S S CS

T T T T

T T

=

= = =

= = =

− − − − − − − −

− − − − − − − −

1
1

1
2

1 1 1 1
2

1

1
1

2
1 1 1

2
1

2
1

2
1

[Note that if S is diagonal, the effect of multiplying on the left (SA) is to multiply row (i)

by S(i,i), and the effect of multiplying on the right is to multiply column (j) by S(j,j).]
The scaling by S1  can be thought of as multiplying each observation equation by a

separate constant, as when, for example, the units of the TDOA equation are changed
from seconds to meters.  The scaling by S2  can be thought of as changing the units of the

elements of the state vector (which of course also changes the solution covariance).  The

consistency of the above equations shows that the linear problem may be arbitrarily scaled
without modifying the solution.  In non-linear problems as well, the scaling by S1  clearly

acts in the same way, effectively multiplying each observation equation by a (perhaps
different) constant.  However, the scaling by S2  cannot work for non-linear problems,

except in special cases, because there the matrix A is in fact a matrix of partial derivatives

( ) ( )~
~

~A
F X

X

F X

X
S= = −

∂

∂
∂

∂ 2
1

and the second equality here would hold only if F(X) were linear in X.  The TDOA

equations, however, are a special case (see below), and the state vector can be scaled,

with one important caveat.[Ref. 19]

Numerical analysis indicates that the ideal situation is to have a matrix A which is

“equilibrated,” meaning that

A A const kkj
j

ik
i

∑ ∑≈ ≈ ∀.

That is, minimizing the numerical error incurred while solving the least squares equation

requires that the sum of absolute values along every row and every column has about the

same magnitude.  While this is possible in principle, in practice it is very difficult to find

scaling matrices which will do this in the general case.[Ref. 19]

B-12

B-13

B-14

B-15

B-16
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Consider in detail the scaling of the mixed F/TDOA problem as described in Reference 19.

Observation equations:

( )

( )

c TDOA r R R

f FDOA r v
v

c

v

c

ij
i j

T ij

i j

⋅ = −

⋅ = −− ℘ ℘

r

r r
r r

( ) ( )

( ) ( )

,1
∆ ∆

Measurement covariance matrix:
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Linearized least squares equation:
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Direction cosines are denoted by α , and R is the observer-target separation.  In

the state vector, dx  and dv  refer to the offset from the position and velocity, respectively,
of the nominal state, and the subscripts ℘  and ⊥  refer to components parallel and

perpendicular, respectively, to the line of sight. Note the scaling of these equations.  The

TDOA equation has units (meters) and typically these values are of order 105  or more.

The FDOA equation has units (m/s) and typical values are of order 1.  Therefore the

relative scaling is of order 10 5− , and may approach much smaller values.  This is

particularly true when the problem begins to approach singularity. Thus there is a

significant difference of scale within the mixed TDOA/FDOA problem.  Also note that the

TDOA, FDOA and mixed problems, although non-linear, can be scaled in the sense of

scaling the state vector, as long as all three components of position and all three

components of velocity are scaled alike.  To see this it is enough to note that changing the

scale of the three position (velocity) components, uniformly, does not change the physics

of the problem, it simply changes the units of length (or time or both).[Ref. 19]
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Thus the F/TDOA problem may be scaled in the following way.  Choose to scale

the problem with 4 constants, one each for the three position coordinates together, the

three velocity components, the TDOA data and the FDOA data.  The scaling matrices are

S
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S
l
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1
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0

0

0

=
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where each element represents a diagonal block with constant elements; the blocks in S2

have dimension 3, and the blocks in S1  cover the TDOA data (L) and FDOA data (V).

Then the least squares equation becomes
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Examination of these equations allows one to identify an appropriate value for

each scaling constant so as to make the terms of order unity, as much as is possible.  The

length scale L  should be the scale of the TDOA data, which is of order the typical

observer-observer separation distance.  The other length scale, l , is of order R , the

observer-target separation.  If these length scales are equal the TDOA problem is well

conditioned and the partials matrix has all terms of order unity.  If they are not, the TDOA

problem is difficult to solve (the geometry is poor), but this is a problem which scaling is

not going to address anyway.  In any case it is probably simplest and best just to choose L

= l  = an average or other compromise of the two length scales.[Ref. 19]
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In the FDOA portion, V  apparently needs to be equal to two velocity scales, both

the scale of the FDOA data (right hand side of the equation), which has the scale of the

typical observer-observer relative velocity along the target line-of-sight, and also the scale

of the typical observer-target relative velocity perpendicular to the line-of-sight (left hand

side).  Again, if these scales are equal the problem is well conditioned, and if they are not,

there is nothing to do about it.  The second velocity scale is arbitrary, since it appears only

once, in the partials matrix;  it is probably best used to cancel the scaling of the direction

cosines, i.e. v  = V .  With this scaling in place, clearly every equation is dimensionless,

and every term has a magnitude of the order of unity (or at least close).  Of particular

importance is the partials matrix, which is nicely “equilibrated”.  This should have a direct

effect on the numerical stability and accuracy of the estimation process.[Ref. 19]
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APPENDIX C.  RELATIVE PRECISION

Relative precision provides a precise estimate of the mean when the sample size of

the data is unknown.  Relative precision requires that we continue to sample our

simulation results until we are certain, at some level of confidence, α , that the current
estimate has a given relative error, γ .  Another way of saying this would be that we are

( )1− α %  confident that the percentage error in our estimate, the empirical mean, is 100γ

percent.  From Reference 23, this probabilistic relationship is defined as:

( )P
X −

≤








 = −

µ
µ

γ α1

In order to satisfy this relationship, JBSTAFSim samples the miss distance until there have

been at least 30 observations and the confidence interval half-width of the estimate

diveded by the empirical mean is less than or equal the percentage error in our estimate.
Rather, calling the empirical variance S 2  and Zk  the 100kth quantile for a standard

Normal random variable, this terminating condition is defined as:
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1 2
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+

α γ
γ

S
n

X

Thus, the left hand side of C-2 represents an estimate of the actual relative error.
Once γ  is set, the simulation continues until this estimate satisfies the above inequality

which means the point estimate X  has a relative error of at most ( )γ γ1−  with

probability of approximately ( )1− α .  The derivation of C-1 and C-2 can be found in

Reference 23.

Finally, it should be noted that our estimate, X , is actually distributed with a

Student-t distribution with n degrees of freedom; however since n will be very large

(greater than 1000), the quantile from the standard Normal distribution is more than

adequate to calculate the estimate confidence interval half-width.

C-1

C-2
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